Routing decisions of a hybrid vehicle on electric road networks

Alejandro Gutierrez-Alcoba MSCA COFUND Postdoctoral fellow Roberto Rossi
Professor and Chair in Uncertainty Modelling Belen Martin-Barragan Reader in Management Science

UNIVERSITY OF EDINBURGH
Business School

Decarbonising transportation

Source: International Energy Association. IEA and IPCC (2014) Summary for Policymakers.

Decarbonising transportation

Source: International Energy Association. IEA and IPCC (2014) Summary for Policymakers.

Decarbonising transportation

Source: International Energy Association. IEA and IPCC (2014) Summary for Policymakers.

or

Decarbonising transportation

Source: International Energy Association. IEA and IPCC (2014) Summary for Policymakers.

or $\stackrel{6}{6}$

Decarbonising transportation

Source: International Energy Association. IEA and IPCC (2014) Summary for Policymakers.

or

A solution: Road electrification

Overhead catenary systems and compatible vehicles

Illustrative overview of the hybrid vehicle architecture with charge-in-motion capability via the overhead catenary, reproduced from Siemens (2020).

- Seamless connection
- The system powers the vehicle
- The system charges its battery
- Range extender on the vehicle (e.g., diesel engine)

Electrification plan in the UK

PHASE1

Distance	2,026 miles
Construction time:	2 years
Cost:	$£ 5.6$ billion
HGV km coverage:	31%

PHASE 2

Distance	$\mathbf{2 , 6 3 8}$ miles
Construction time:	$\mathbf{2 . 6 y e a r s}$
Cost:	$\mathbf{£ 5 . 1}$ billion
HGV km coverage:	$\mathbf{5 0 \%}$

PHASE 3

Distance
3,914 miles
Construction time: 2.5 years

Cost:
HGV km coverage:
65\%

Problem description I

Some assumptions:

- Single vehicle
- Loading inventory at depot location (single product)
- Visiting retailers across the network
- The vehicle is a hybrid HGV (using fuel only if battery is depleted)
- Minimising: (1) electricity and fuel energy costs (2) (expected) lost sales costs

Shortest paths for EVs on electrified roads

- Battery capacity of vehicle is 30 units
- Energy cost per unit from electricity/battery: 1
- Energy cost per unit from fuel: 2
- The vehicle uses battery whenever is possible
- How to go from node 0 to node 2?

Shortest paths for EVs on electrified roads

- Battery capacity of vehicle is 30 units
- Energy cost per unit from electricity/battery: 1
- Energy cost per unit from fuel: 2
- The vehicle uses battery whenever is possible
- How to go from node 0 to node 2?

Problem description II

- Graph $G=\langle\mathcal{N}, \mathcal{A}\rangle$ representing the road network
- Depot: node 0, Retailers: $\mathcal{C} \subseteq \mathcal{N}$
- Discrete time horizon T periods
$>$ Stochastic demand d_{t}^{c}
- Vehicle location: V_{t}^{i} (binary var.)
- Vehicle load-up \& delivery to $c: L_{t} \& Q_{t}^{i}$
- Customers capacity: k_{c}, vehicle capacity: K
- Required \& supplied battery $(i, j): r_{i j}(M) \& s_{i j}$
- $C^{b}, C^{f}: \mathrm{kWh}$ cost of electric road, battery, or fuel
- Lost sales penalty per unit: p

Energy model

Power:

$$
\begin{equation*}
P(a, v)=M a v+M g v \sin \theta+0.5 C_{d} A \rho v^{3}+M g C_{r} \cos \theta v \tag{1}
\end{equation*}
$$

Required energy arc (i, j)

$$
\begin{align*}
r_{i j}(M)=\lambda P\left(0, v_{i j}\right)\left(d_{i j} / v_{i j}\right) & =\lambda\left(M g \sin \theta_{i j}\right. \\
& \left.+0.5 C_{d} A \rho v_{i j}^{2}+M g C_{r} \cos \theta_{i j}\right) d_{i j} \\
& =\alpha_{i j} M+\beta_{i j} \tag{2}
\end{align*}
$$

where $\alpha_{i j}=\lambda d_{i j} g\left(\sin \theta_{i j}+C_{r} \cos \theta_{i j}\right)$ and $\beta_{i j}=\lambda d_{i j} 0.5 C_{d} A \rho v_{i j}^{2}$ are arc constants

A simple example

- Depot: node 0, Customer nodes: $1,2, k_{1}=k_{2}=5$
- Demand $d_{t}^{c}=1 \forall c, t$; Lost sales $p=25$
- Vehicle weight $w=1$, battery cap. $B=20$, inv.
cap. $K=4$
$\rightarrow C^{b}=1$ and $C^{f}=5$
\Rightarrow Start: $V_{0}^{0}=1, L_{0}=0 b_{0}=0$

Tuples on arcs are $\left\langle\alpha_{i j}, \beta_{i j}\right\rangle$

Period: 0

A simple example

- Depot: node 0, Customer nodes: 1, 2, $k_{1}=k_{2}=5$
- Demand $d_{t}^{c}=1 \forall c, t$; Lost sales $p=25$
- Vehicle weight $w=1$, battery cap. $B=20$, inv.
cap. $K=4$
$\rightarrow C^{b}=1$ and $C^{f}=5$
\Rightarrow Start: $V_{0}^{0}=1, L_{0}=0 b_{0}=0$

Tuples on arcs are $\left\langle\alpha_{i j}, \beta_{i j}\right\rangle$

Period: 1

A simple example

- Depot: node 0, Customer nodes: $1,2, k_{1}=k_{2}=5$
- Demand $d_{t}^{c}=1 \forall c, t$; Lost sales $p=25$
- Vehicle weight $w=1$, battery cap. $B=20$, inv.
cap. $K=4$
$\rightarrow C^{b}=1$ and $C^{f}=5$
\Rightarrow Start: $V_{0}^{0}=1, L_{0}=0 b_{0}=0$

Tuples on arcs are $\left\langle\alpha_{i j}, \beta_{i j}\right\rangle$

Period: 1

A simple example

- Depot: node 0, Customer nodes: 1, 2, $k_{1}=k_{2}=5$
- Demand $d_{t}^{c}=1 \forall c, t$; Lost sales $p=25$
- Vehicle weight $w=1$, battery cap. $B=20$, inv.
cap. $K=4$
$\rightarrow C^{b}=1$ and $C^{f}=5$
\Rightarrow Start: $V_{0}^{0}=1, L_{0}=0 b_{0}=0$

Tuples on arcs are $\left\langle\alpha_{i j}, \beta_{i j}\right\rangle$

Period: 2

A simple example

- Depot: node 0, Customer nodes: 1, 2, $k_{1}=k_{2}=5$
- Demand $d_{t}^{c}=1 \forall c, t$; Lost sales $p=25$
- Vehicle weight $w=1$, battery cap. $B=20$, inv.
cap. $K=4$
$\rightarrow C^{b}=1$ and $C^{f}=5$
\Rightarrow Start: $V_{0}^{0}=1, L_{0}=0 b_{0}=0$

Tuples on arcs are $\left\langle\alpha_{i j}, \beta_{i j}\right\rangle$

Period: 3

A simple example

- Depot: node 0, Customer nodes: 1, 2, $k_{1}=k_{2}=5$
- Demand $d_{t}^{c}=1 \forall c, t$; Lost sales $p=25$
- Vehicle weight $w=1$, battery cap. $B=20$, inv.
cap. $K=4$
$\rightarrow C^{b}=1$ and $C^{f}=5$
\Rightarrow Start: $V_{0}^{0}=1, L_{0}=0 b_{0}=0$

Tuples on arcs are $\left\langle\alpha_{i j}, \beta_{i j}\right\rangle$

Period: 3

A simple example

- Depot: node 0, Customer nodes: 1, 2, $k_{1}=k_{2}=5$
- Demand $d_{t}^{c}=1 \forall c, t$; Lost sales $p=25$
- Vehicle weight $w=1$, battery cap. $B=20$, inv.
cap. $K=4$
$\rightarrow C^{b}=1$ and $C^{f}=5$
\Rightarrow Start: $V_{0}^{0}=1, L_{0}=0 b_{0}=0$

Tuples on arcs are $\left\langle\alpha_{i j}, \beta_{i j}\right\rangle$

Period: 4

A simple example

- Depot: node 0, Customer nodes: $1,2, k_{1}=k_{2}=5$
- Demand $d_{t}^{c}=1 \forall c, t$; Lost sales $p=25$
- Vehicle weight $w=1$, battery cap. $B=20$, inv.
cap. $K=4$
$\rightarrow C^{b}=1$ and $C^{f}=5$
\Rightarrow Start: $V_{0}^{0}=1, L_{0}=0 b_{0}=0$

Tuples on arcs are $\left\langle\alpha_{i j}, \beta_{i j}\right\rangle$

Period: 4

A simple example

- Depot: node 0, Customer nodes: 1, 2, $k_{1}=k_{2}=5$
- Demand $d_{t}^{c}=1 \forall c, t$; Lost sales $p=25$
- Vehicle weight $w=1$, battery cap. $B=20$, inv.
cap. $K=4$
- $C^{b}=1$ and $C^{f}=5$
\rightarrow Start: $V_{0}^{0}=1, L_{0}=0 b_{0}=0$

Figure 1: Problem instance on a ERS network. Tuples on arcs are $\left\langle\alpha_{i j}, \beta_{i j}\right\rangle$; Supplied energy in the blue arc is $s_{04}=20$, while the rest are zero.

	$\mathrm{t}=0$	$\mathrm{t}=1$	$\mathrm{t}=2$	$\mathrm{t}=3$	$\mathrm{t}=4$
Battery level	N/A	0	11	2	0
V. Position	N/A	0	4	1	2
Vehicle Inv. Load	N/A	3	0	0	0
Delivery	N/A	0	0	2	1
M	N/A	4	4	2	1
Vehicle Inv.	0	3	3	1	0
Inv. ret. 1	2	1	0	1	0
Inv. ret. 2	3	2	1	0	0
Required energy	N/A	9	9	3	0
Travel costs	N/A	0	9	7	0
Penalty costs	N/A	0	0	0	0

Stochastic MILP approximation

- Static uncertainty strategy
- (R, Q) policy: replenishments and delivery quantities are fixed at the beginning of the planning horizon
- The solution gives a fixed route
- Energy costs are deterministic for the model
$\min \sum_{t=2}^{T} \sum_{i=1}^{N} \sum_{j=1}^{N} C^{b} s_{i j} T_{t-1}^{i j}+\sum_{t=2}^{T} C^{b} E_{t}^{b}+C^{f} E_{t}^{f}+\sum_{t=1}^{T} \sum_{i=1}^{C} p\left[I_{t}^{i}\right]^{-}$

Inventory constraints

Definition

Given a random variable ω and a scalar q, the first order loss function is defined as:

$$
\mathcal{L}_{\omega}(q)=E[\max (\omega-q, 0)]
$$

Reciprocally, the complementary first order loss function is:

$$
\hat{\mathcal{L}}_{\omega}(q)=E[\max (q-\omega, 0)]
$$

Constraints:

$$
\begin{array}{r}
{\left[I_{t}^{i}\right]^{-}=\mathcal{L}_{d_{1 t}^{i}}\left(s_{i}+\sum_{k=1}^{t} Q_{k}^{i}+\sum_{k=1}^{t-1}\left[I_{t-1}^{i}\right]^{-}-\sum_{k=1}^{t}\left[E_{k}^{i}\right]\right) \quad t=1, \ldots, T ; i=1, \ldots, C} \\
{\left[I_{t}^{i}\right]^{+}=\hat{\mathcal{L}}_{d_{1 t}^{i}}\left(s_{i}+\sum_{k=1}^{t} Q_{k}^{i}+\sum_{k=1}^{t-1}\left[I_{t-1}^{i}\right]^{-}-\sum_{k=1}^{t}\left[E_{k}^{i}\right]\right) \quad t=1, \ldots, T ; i=1, \ldots, C} \\
{\left[E_{t}^{i}\right]=\max \left(\left[I_{t}^{i}\right]^{+}+Q_{t}^{i}-s_{i}, 0\right) \quad t=1, \ldots, T ; i=1, \ldots, C}
\end{array}
$$

Linearisation of the loss function:
Rossi et.al. (2014). Piecewise linear lower and upper bounds for the standard normal first order loss function. Applied Mathematics and Computation, 231:489-502.

Numerical experiments: testbed design

T3

Initial inventory at $\{\mathrm{R} 1, \mathrm{R} 2\}$ Demand distributions
(D1) $\lambda_{R} 1=\{2,2,2,2,2,2,2,2,2\}$,
$\lambda_{R} 2=\{2,2,2,2,2,2,2,2,2\}$
$\begin{aligned} & \text { (D2) } \lambda_{R} 1=\{1,1,2,2,3,3,4,4,5\}, \\ & \lambda_{R} 2=\{5,4,4,3,3,2,2,1,1\}\end{aligned} \quad \mathrm{p}=\{10,20,30\}$
(D3) $\lambda_{R} 1=\{1,1,2,1,1,2,2,3,1\}$,
$\lambda_{R} 2=\{1,1,2,1,1,2,2,3,1\}$

Numerical experiments: testbed design

Table: Pivot table of mean, median and standard deviation of percentage error (MPE, MdPE, SD respectively) of the solutions obtained by the MILP heuristic for the computational study

	MPE	MdPE	SD
Network			
T1	3.47%	3.42%	2.14%
T2	3.48%	3.19%	2.05%
T3	3.18%	2.53%	2.57%
T4	4.73%	3.88%	4.12%
Initial inv.			
(0,0)	3.94%	3.41%	2.87%
(5,5)	3.49%	3.03%	2.91%
Penalty			
10	1.67%	1.30%	1.57%
20	3.98%	3.51%	2.45%
30	5.50%	5.22%	3.06%
Demand	pattern		
D1	3.70%	3.39%	2.67%
D2	3.50%	3.02%	2.71%
D3	3.95%	3.29%	3.28%
General	3.72%	3.25%	2.90%

Electrification stages example

Instance
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
\% costs from fuel

Stage 0	
Battery cost	Fuel cost
50.00	87.38
50.00	131.01
50.00	148.34
50.00	84.15
50.00	126.90
50.00	67.86
50.00	101.27
50.00	74.02
50.00	166.85
50.00	176.37
69.95%	

Stage 1

Battery cost Fuel cost
 Stage 2

50.00	87.38
122.50	17.77
91.06	99.89
79.11	32.70
110.71	22.33
112.34	0.00
88.07	20.30
86.63	0.00
120.80	36.55
50.00	176.37
35.12%	

Stage 2	
Battery cost	Fuel cost
121.40	9.53
118.17	0.00
165.66	11.29
102.73	0.00
110.71	22.33
106.69	0.00
88.07	20.30
86.63	0.00
121.36	17.91
100.88	68.17
11.75%	

Stage 3
Battery cost Fuel cost
127.34 9.53
125.42 176.68 108.66 110.71 119.67 102.09 86.63 134.38 136.7 2.52%

