Routing decisions of a hybrid vehicle on electric road networks

Alejandro Gutierrez-Alcoba
MSCA COFUND Postdoctoral fellow

Roberto Rossi
Professor and Chair in Uncertainty Modelling

Belen Martin-Barragan
Reader in Management Science
Decarbonising transportation

Decarbonising transportation

Decarbonising transportation

Global Greenhouse Gas Emissions by the Transportation Sector

Decarbonising transportation

Global Greenhouse Gas Emissions by the Transportation Sector

Decarbonising transportation

Global Greenhouse Gas Emissions by the Transportation Sector

A solution: Road electrification
Overhead catenary systems and compatible vehicles

- Seamless connection
- The system powers the vehicle
- The system charges its battery
- Range extender on the vehicle (e.g., diesel engine)
Electrification plan in the UK

PHASE 1
- Distance: 2,026 miles
- Construction time: 2 years
- Cost: £5.6 billion
- HGV km coverage: 31%

PHASE 2
- Distance: 2,638 miles
- Construction time: 2.6 years
- Cost: £5.1 billion
- HGV km coverage: 50%

PHASE 3
- Distance: 3,914 miles
- Construction time: 2.5 years
- Cost: £7.1 billion
- HGV km coverage: 65%
Problem description I

Some assumptions:

- Single vehicle
- Loading inventory at depot location (single product)
- Visiting retailers across the network
- The vehicle is a hybrid HGV (using fuel only if battery is depleted)
- Minimising: (1) electricity and fuel energy costs (2) (expected) lost sales costs
Shortest paths for EVs on electrified roads

- Battery capacity of vehicle is 30 units
- Energy cost per unit from electricity/battery: 1
- Energy cost per unit from fuel: 2
- The vehicle uses battery whenever is possible
- How to go from node 0 to node 2?
Shortest paths for EVs on electrified roads

- Battery capacity of vehicle is 30 units
- Energy cost per unit from electricity/battery: 1
- Energy cost per unit from fuel: 2
- The vehicle uses battery whenever is possible
- How to go from node 0 to node 2?
Problem description II

- Graph $G = \langle \mathcal{N}, \mathcal{A} \rangle$ representing the road network
- Depot: node 0, Retailers: $\mathcal{C} \subseteq \mathcal{N}$
- Discrete time horizon T periods
 - Stochastic demand d^c_t
 - Vehicle location: V^i_t (binary var.)
 - Vehicle load-up & delivery to c: L_t & Q^i_t
- Customers capacity: k_c, vehicle capacity: K
- Required & supplied battery (i, j): $r_{ij}(M)$ & s_{ij}
- C^b, C^f: kWh cost of electric road, battery, or fuel
- Lost sales penalty per unit: p
Energy model

Power:

\[P(a, v) = Mav + Mg \sin \theta + 0.5 C_d A \rho v^3 + MgC_r \cos \theta v \] (1)

Required energy arc \((i, j)\)

\[r_{ij}(M) = \lambda P(0, v_{ij})(d_{ij}/v_{ij}) = \lambda (Mg \sin \theta_{ij} + 0.5 C_d A \rho v_{ij}^2 + MgC_r \cos \theta_{ij})d_{ij} = \alpha_{ij} M + \beta_{ij} \] (2)

where \(\alpha_{ij} = \lambda d_{ij} g(\sin \theta_{ij} + C_r \cos \theta_{ij})\) and \(\beta_{ij} = \lambda d_{ij} 0.5 C_d A \rho v_{ij}^2\) are arc constants.
A simple example

- Depot: node 0, Customer nodes: 1, 2, $k_1 = k_2 = 5$
- Demand $d_{t}^{c} = 1 \forall c, t$; Lost sales $p = 25$
- Vehicle weight $w = 1$, battery cap. $B = 20$, inv. cap. $K = 4$
- $C^b = 1$ and $C^f = 5$
- Start: $V_0^0 = 1$, $L_0 = 0$ $b_0 = 0$

Tuples on arcs are $(\alpha_{ij}, \beta_{ij})$
A simple example

- Depot: node 0, Customer nodes: 1, 2, \(k_1 = k_2 = 5 \)
- Demand \(d^c_t = 1 \ \forall c, t \); Lost sales \(p = 25 \)
- Vehicle weight \(w = 1 \), battery cap. \(B = 20 \), inv. cap. \(K = 4 \)
- \(C^b = 1 \) and \(C^f = 5 \)
- Start: \(V^0_0 = 1, L_0 = 0, b_0 = 0 \)
A simple example

- **Depot**: node 0, Customer nodes: 1, 2, \(k_1 = k_2 = 5 \)
- **Demand** \(d_t^c = 1 \ \forall c, t; \) Lost sales \(p = 25 \)
- **Vehicle weight** \(w = 1 \), battery cap. \(B = 20 \), inv. cap. \(K = 4 \)
- \(C^b = 1 \) and \(C^f = 5 \)
- **Start**: \(V_0^0 = 1 \), \(L_0 = 0 \) \(b_0 = 0 \)
A simple example

- Depot: node 0, Customer nodes: 1, 2, $k_1 = k_2 = 5$
- Demand $d_t^c = 1 \; \forall c, t$; Lost sales $p = 25$
- Vehicle weight $w = 1$, battery cap. $B = 20$, inv. cap. $K = 4$
- $C^b = 1$ and $C^f = 5$
- Start: $V_0^0 = 1$, $L_0 = 0$, $b_0 = 0$
A simple example

- Depot: node 0, Customer nodes: 1, 2, $k_1 = k_2 = 5$
- Demand $d_t^c = 1 \forall c, t$; Lost sales $p = 25$
- Vehicle weight $w = 1$, battery cap. $B = 20$, inv. cap. $K = 4$
- $C^b = 1$ and $C^f = 5$
- Start: $V_0^0 = 1$, $L_0 = 0$ $b_0 = 0$

Tuples on arcs are $\langle \alpha_{ij}, \beta_{ij} \rangle$

![Graph showing a network with nodes and tuples on arcs]
A simple example

- Depot: node 0, Customer nodes: 1, 2, $k_1 = k_2 = 5$
- Demand $d_{t}^{c} = 1 \forall c, t$; Lost sales $p = 25$
- Vehicle weight $w = 1$, battery cap. $B = 20$, inv. cap. $K = 4$
- $C^b = 1$ and $C^f = 5$
- Start: $V_0^0 = 1$, $L_0 = 0$ $b_0 = 0$

Tuples on arcs are $(\alpha_{ij}, \beta_{ij})$
A simple example

- Depot: node 0, Customer nodes: 1, 2, $k_1 = k_2 = 5$
- Demand $d_t^c = 1 \forall c, t$; Lost sales $p = 25$
- Vehicle weight $w = 1$, battery cap. $B = 20$, inv. cap. $K = 4$
- $C^b = 1$ and $C^f = 5$
- Start: $V_0^0 = 1$, $L_0 = 0$, $b_0 = 0$

Tuples on arcs are $\langle \alpha_{ij}, \beta_{ij} \rangle$
A simple example

- Depot: node 0, Customer nodes: 1, 2, $k_1 = k_2 = 5$
- Demand $d^c_t = 1 \ \forall c, t$; Lost sales $p = 25$
- Vehicle weight $w = 1$, battery cap. $B = 20$, inv. cap. $K = 4$
- $C^b = 1$ and $C^f = 5$
- Start: $V_0^0 = 1$, $L_0 = 0$, $b_0 = 0$

Tuples on arcs are $\langle \alpha_{ij}, \beta_{ij} \rangle$
A simple example

- Depot: node 0, Customer nodes: 1, 2, \(k_1 = k_2 = 5 \)
- Demand \(d_{ct}^c = 1 \ \forall c, t; \) Lost sales \(p = 25 \)
- Vehicle weight \(w = 1, \) battery cap. \(B = 20, \) inv. cap. \(K = 4 \)
- \(C^b = 1 \) and \(C^f = 5 \)
- Start: \(V_0^0 = 1, L_0 = 0, b_0 = 0 \)

Figure 1: Problem instance on a ERS network. Tuples on arcs are \((\alpha_{ij}, \beta_{ij}); \) Supplied energy in the blue arc is \(s_{04} = 20, \) while the rest are zero.
Stochastic MILP approximation

▶ Static uncertainty strategy
▶ (R,Q) policy: replenishments and delivery quantities are fixed at the beginning of the planning horizon
▶ The solution gives a fixed route
▶ Energy costs are deterministic for the model

\[
\min \sum_{t=2}^{T} \sum_{i=1}^{N} \sum_{j=1}^{N} C^b s_{ij} T_{t-1}^{ij} + \sum_{t=2}^{T} C^b E^b_t + C^f E^f_t + \sum_{t=1}^{T} \sum_{i=1}^{C} p[l^i_t]^-
\] (3)
Inventory constraints

Definition

Given a random variable ω and a scalar q, the first order loss function is defined as:

$$\mathcal{L}_\omega(q) = E[\max(\omega - q, 0)]$$

Reciprocally, the complementary first order loss function is:

$$\hat{\mathcal{L}}_\omega(q) = E[\max(q - \omega, 0)]$$

Constraints:

$$[l_{it}^-] = \mathcal{L}_{d_{it}} \left(s_i + \sum_{k=1}^{t} Q_i^k + \sum_{k=1}^{t-1} [l_{t-1}^-] - \sum_{k=1}^{t} [E_i^k] \right) t = 1, \ldots, T; i = 1, \ldots, C$$

$$[l_{it}^+] = \hat{\mathcal{L}}_{d_{it}} \left(s_i + \sum_{k=1}^{t} Q_i^k + \sum_{k=1}^{t-1} [l_{t-1}^-] - \sum_{k=1}^{t} [E_i^k] \right) t = 1, \ldots, T; i = 1, \ldots, C$$

$$[E_i^t] = \max \left([l_{it}^+] + Q_i^t - s_i, 0 \right) t = 1, \ldots, T; i = 1, \ldots, C$$

Linearisation of the loss function:

Numerical experiments: testbed design

Initial inventory at \{R_1, R_2\}

- Demand distributions
 - (D1) \(\lambda_{R1} = \{2,2,2,2,2,2,2,2,2\}\), \(\lambda_{R2} = \{2,2,2,2,2,2,2,2,2\}\)
 - (D2) \(\lambda_{R1} = \{1,1,2,2,3,3,4,4,5\}\), \(\lambda_{R2} = \{5,4,4,3,3,2,2,1,1\}\)
 - (D3) \(\lambda_{R1} = \{1, 1, 1, 1, 1, 2, 2, 2, 3, 1\}\), \(\lambda_{R2} = \{1, 1, 2, 1, 1, 2, 2, 3, 1\}\)

- Unit penalty cost \(p = \{10, 20, 30\}\)
Numerical experiments: testbed design

Table: Pivot table of mean, median and standard deviation of percentage error (MPE, MdPE, SD respectively) of the solutions obtained by the MILP heuristic for the computational study

<table>
<thead>
<tr>
<th></th>
<th>MPE</th>
<th>MdPE</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>3.47%</td>
<td>3.42%</td>
<td>2.14%</td>
</tr>
<tr>
<td>T2</td>
<td>3.48%</td>
<td>3.19%</td>
<td>2.05%</td>
</tr>
<tr>
<td>T3</td>
<td>3.18%</td>
<td>2.53%</td>
<td>2.57%</td>
</tr>
<tr>
<td>T4</td>
<td>4.73%</td>
<td>3.88%</td>
<td>4.12%</td>
</tr>
<tr>
<td>Initial inv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0,0)</td>
<td>3.94%</td>
<td>3.41%</td>
<td>2.87%</td>
</tr>
<tr>
<td>(5,5)</td>
<td>3.49%</td>
<td>3.03%</td>
<td>2.91%</td>
</tr>
<tr>
<td>Penalty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.67%</td>
<td>1.30%</td>
<td>1.57%</td>
</tr>
<tr>
<td>20</td>
<td>3.98%</td>
<td>3.51%</td>
<td>2.45%</td>
</tr>
<tr>
<td>30</td>
<td>5.50%</td>
<td>5.22%</td>
<td>3.06%</td>
</tr>
<tr>
<td>Demand pattern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>3.70%</td>
<td>3.39%</td>
<td>2.67%</td>
</tr>
<tr>
<td>D2</td>
<td>3.50%</td>
<td>3.02%</td>
<td>2.71%</td>
</tr>
<tr>
<td>D3</td>
<td>3.95%</td>
<td>3.29%</td>
<td>3.28%</td>
</tr>
<tr>
<td>General</td>
<td>3.72%</td>
<td>3.25%</td>
<td>2.90%</td>
</tr>
</tbody>
</table>
Electrification stages example

<table>
<thead>
<tr>
<th>Instance</th>
<th>Stage 0 Battery cost</th>
<th>Stage 0 Fuel cost</th>
<th>Stage 1 Battery cost</th>
<th>Stage 1 Fuel cost</th>
<th>Stage 2 Battery cost</th>
<th>Stage 2 Fuel cost</th>
<th>Stage 3 Battery cost</th>
<th>Stage 3 Fuel cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>50.00</td>
<td>87.38</td>
<td>50.00</td>
<td>87.38</td>
<td>121.40</td>
<td>9.53</td>
<td>127.34</td>
<td>9.53</td>
</tr>
<tr>
<td>R2</td>
<td>50.00</td>
<td>131.01</td>
<td>122.50</td>
<td>17.77</td>
<td>118.17</td>
<td>0.00</td>
<td>125.42</td>
<td>0.00</td>
</tr>
<tr>
<td>R3</td>
<td>50.00</td>
<td>148.34</td>
<td>91.06</td>
<td>99.89</td>
<td>165.66</td>
<td>11.29</td>
<td>176.68</td>
<td>0.00</td>
</tr>
<tr>
<td>R4</td>
<td>50.00</td>
<td>84.15</td>
<td>79.11</td>
<td>32.70</td>
<td>102.73</td>
<td>0.00</td>
<td>108.66</td>
<td>0.00</td>
</tr>
<tr>
<td>R5</td>
<td>50.00</td>
<td>126.90</td>
<td>110.71</td>
<td>22.33</td>
<td>110.71</td>
<td>22.33</td>
<td>110.71</td>
<td>22.33</td>
</tr>
<tr>
<td>R6</td>
<td>50.00</td>
<td>67.86</td>
<td>112.34</td>
<td>0.00</td>
<td>106.69</td>
<td>0.00</td>
<td>119.67</td>
<td>0.00</td>
</tr>
<tr>
<td>R7</td>
<td>50.00</td>
<td>101.27</td>
<td>88.07</td>
<td>20.30</td>
<td>88.07</td>
<td>20.30</td>
<td>102.09</td>
<td>0.00</td>
</tr>
<tr>
<td>R8</td>
<td>50.00</td>
<td>74.02</td>
<td>86.63</td>
<td>0.00</td>
<td>86.63</td>
<td>0.00</td>
<td>86.63</td>
<td>0.00</td>
</tr>
<tr>
<td>R9</td>
<td>50.00</td>
<td>166.85</td>
<td>120.80</td>
<td>36.55</td>
<td>121.36</td>
<td>17.91</td>
<td>134.38</td>
<td>0.00</td>
</tr>
<tr>
<td>R10</td>
<td>50.00</td>
<td>176.37</td>
<td>176.37</td>
<td>0.00</td>
<td>176.37</td>
<td>0.00</td>
<td>176.37</td>
<td>0.00</td>
</tr>
</tbody>
</table>

% costs from fuel:
- Stage 0: 69.95%
- Stage 1: 35.12%
- Stage 2: 11.75%
- Stage 3: 2.52%