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Motivation (1)

Nahmias (1982): review of the early literature on ordering policies
for perishable inventories between 1960s and 1982.

Karaesmen et al. (2011), Bakker et al. (2013): review the more
recent supply chain management literature of perishable products
having fixed or random lifetimes.

Entrup (2005), Advanced Planning Systems generally tend to not
adequately incorporate shelf life aspects of food in their inventory
control facilities.
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Motivation (2)

In stochastic inventory control for perishable items the structure of
the optimal replenishment policy is typically complex:
the replenishment quantity depends on the individual age
categories of current inventories and all outstanding orders.

For this reason, developing effective heuristic policies is of great
practical importance in inventory systems for perishable items
(Karaesmen et al., 2011).
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Outline of the work

We consider the periodic-review, single-location, single-product,
production / inventory control problem under non stationary
demand and service-level constraints. The product is perishable
and has a fixed shelf life. Costs comprise fixed ordering costs and
inventory holding costs.

A similar problem was considered in Minner and Transchel (2010);
however the authors adopted the simplifying assumption that fixed
ordering costs are negligible.

For this inventory system we discuss a number of control policies
that may be adopted. For one of these policies, we assess the
quality of the approximate Constraint Programming (CP) model
proposed in Rossi et al. (2010).
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Problem description

We consider a planning horizon of N periods and a demand dt for each period
t ∈ {1, . . . , N}, which is a non-negative random variable with known probability
density function gt(dt). We assume that the demand occurs instantaneously at the
beginning of each time period. The demand is non-stationary, that is it can vary from
period to period and demands in different periods are assumed to be independent.
Demands occurring when the system is out of stock are back-ordered and satisfied as
soon as the next replenishment order arrives. The sellback of excess stock is not
allowed. A fixed delivery cost a and a proportional unit cost u are incurred for each
order. A replenishment order is assumed to arrive instantaneously at the beginning of
each period, before the demand in that period occurs. For ease of exposition, we
assume that there is no replenishment lead-time; however, the model can be easily
extended to systems with positive and fixed replenishment lead-times. Each item that
is delivered by the supplier arrives fresh and expires in exactly M +1 periods; therefore
a product age may range from 0 to M . A linear holding cost h is incurred for each
unit of product carried in stock from one period to the next. A linear wastage cost w
is incurred, at the end of each period, for each unit of product that reached age M .
Our aim is to find a replenishment plan that minimizes the expected total cost, which
is composed of ordering costs, holding costs, and wastage costs over an N-period
planning horizon, while satisfying given service level constraints. As service level
constraints, we require that, with a probability of at least α, at the end of each period
the net inventory will be non-negative.
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Problem description
Sequence of events

The actual sequence of actions is to some extend arbitrary. In
what follows, we will assume that at the beginning of a period, the
inventory on hand after all the demands from previous periods
have been realized is known, for each product age that is available.
Since we are assuming complete backlogging, this quantity may be
negative. However, note that only fresh products can be
backordered, since the supplier only delivers fresh products. On the
basis of this information, an ordering decision is made for the
current period and the respective order is immediately received.
Then the period demand is observed and the stock is reduced
according to a “first in first out” (FIFO) issuing policy. If, after the
demand has been observed, there are still items of age M in stock,
these are disposed at cost w per unit. Finally, holding cost is
incurred on the remaining stock that is carried over to the next
period.
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Stochastic programming model
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Optimal policy

Deriving the optimal policy for the stochastic program discussed in
Section 3 is a non-trivial task.

To date, there exists no complete solution method for
accomplishing this task for a generic demand distribution.

However, when the stochastic demand follows a discrete
distribution defined over a finite support, the optimal policy for the
stochastic program discussed in Section 3 can be obtained, for
small instances, by using a deterministic equivalent scenario based
model, see Birge and Louveaux (1997).
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Numerical example (1)

We consider a planning horizon comprising 4 periods. In each
period we observe a random demand that follows a discrete
distribution. The probability mass functions for the demand is

pmf(d1) = {18(0.5), 26(0.5)}
pmf(d2) = {52(0.5), 6(0.5)}
pmf(d3) = {9(0.5), 43(0.5)}
pmf(d4) = {20(0.5), 11(0.5)}.

The fixed delivery cost a is set to 300, the proportional unit cost u
to 2, the holding cost h to 1 and the wastage cost w to 4. The
shelf life M is set to 2 and the prescribed satisfaction probability α

is 0.85.
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Numerical example (2)
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Numerical example (2)
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Unfortunately, an optimal policy is highly unstructured and
therefore hardly usable in practice.
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Heuristic policies
Static-uncertainty

Introduced by Bookbinder and Tan (1988) the so-called “static-
uncertainty” strategy fixes order quantities and review times
once-and-for-all at the beginning of the planning horizon.

In practice, this policy may be of interest for practitioners in all
those situations in which replenishment periods as well as precise
order quantities must be agreed with the customer in advance.

Numerical example

Expected total cost: 1065.5

Period 1 2 3 4

Qt 78 0 54 0

Table: Optimal policy parameters under a “static-uncertainty” strategy
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Heuristic policies
Static-dynamic uncertainty

In several situations, however, the “static-uncertainty” strategy results not flexible
enough.

When customer demand is non-stationary and the accuracy of the forecast is low,
Bookbinder and Tan (1988) proposed a more flexible strategy known as
“static-dynamic uncertainty”.

This strategy features a series of review times, all fixed at the beginning of the
planning horizon (i.e., the static aspect of the strategy). However, the actual order
quantities are determined only after observing the realized demand (i.e., the dynamic
aspect of the strategy).

When items in stock are perishables, the “static-dynamic uncertainty” strategy may
be formulated as a stock-age independent or as a stock-age dependent policy.
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Static-dynamic uncertainty
stock-age independent policy

A stock-age independent “static-dynamic uncertainty” strategy associates with each
review period an order-up-to-level.

As in the classical “static-dynamic uncertainty” strategy for non-perishable items, the
order quantity is computed as the amount of stock required to raise the inventory level
up to the order-up-to-level, regardless of the age of products in stock carried over from
previous periods.

Order-up-to-levels for review periods are set in such a way as to compensate for the
realized waste and to ensure the required service level.

This strategy may be appealing for practitioners, since it does not require to take into
account the different ages of stock on hand. However, it may clearly produce higher
waste than a stock-age dependent policy and therefore incur higher expected total
costs, since order quantities do not take into account the age, but only the number of
items available in stock.
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Static-dynamic uncertainty
stock-age independent policy

Numerical example

Expected total cost: 1005.5

Period 1 2 3 4

St 78 0 66 0
δt 1 0 1 0

Table: Optimal policy parameters under a stock age independent
“static-dynamic uncertainty” strategy
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Static-dynamic uncertainty
stock-age dependent policy

A stock-age dependent “static-dynamic uncertainty” strategy does
not operate based on order-up-to-levels. For each review period
the order quantity is computed as the minimum amount of stock
required to guarantee the required service level up until the next
review period. This quantity is computed by taking into account
the age and the amount of items available in stock.

This strategy may guarantee lower waste and expected total cost
than a stock-age independent “static-dynamic uncertainty”
strategy.

However, the computation of the order quantity is more complex
that in a stock-age independent strategy. This complicates the
implementation of this strategy in practical settings.
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Static-dynamic uncertainty
stock-age dependent policy

Numerical example
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Static-dynamic uncertainty
Computing policy parameters: a brute force approach

Consider the problem of computing the minimum order quantity Q

that is required to meet prescribed service level constraints during
a replenishment cycle over periods i, . . . , j, when a mix of items
with different age categories is already available in the system at
the beginning of period i.

Let Imi−1 be the available inventory of age m. Consider an array
I = {I0i−1, I

1
i−1, . . . , I

M
i−1} describing the available inventory at the

beginning of period i, before our ordering decision is made. Note
that I0i−1 may be negative in order to keep track of situations in
which we start with some backordered demand.
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Static-dynamic uncertainty
Computing policy parameters: a brute force approach

The service level constraint for period t can be written as

Pr{I0t ≥ 0} ≥ α. (11)

In other words, only fresh items can be backordered. We now introduce the following
stochastic recurrence relation

Imt = max(Im−1
t−1 −max(dt −

M−1
∑

k=m

Ikt−1, 0), 0), (12)

for t = i, . . . , j and m = 2, . . . ,M . Furthermore,
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for t = i. We also consider the indicator function

f(Q, di, di+1, . . . , dt) =

{

1 if I0t ≥ 0
0 otherwise

,
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Static-dynamic uncertainty
Computing policy parameters: a brute force approach

Given the array I, describing the available inventory at the beginning of period i,
before our ordering decision is made, and an ordering decision Q, by using the
indicator function introduced, we express the service level constraint as

∫

di

. . .

∫

dt

f(Q, di, . . . , dt)g(di) . . . g(dt)ddi . . .ddt ≥ α. (15)

The left hand side of Eq. 15 is increasing in Q, therefore the minimum order quantity
that satisfies the above relation can be found using a binary search procedure that
numerically integrates the expression.

Due to the cost structure of the stochastic program, for a given replenishment cycle,
the minimum Q that satisfies Eq. 15 also minimizes the expected total cost for that
cycle.

In our numerical experiments, we employ Monte Carlo integration to numerically
integrate Eq. 15 with a precision of ±0.005 at 95% confidence.
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Static-dynamic uncertainty
Computing policy parameters: a brute force approach

Numerical example (1) For the same instance discussed before, we consider a
replenishment cycle that starts in period 3 and ends in period 4. The initial inventory
array is I = {44, 2, 0}. The procedure discussed prescribes an optimal order quantity
Q = 17.

Numerical example (2) We consider the same instance discussed before. We solve
this instance by using the “brute force” approach. The resulting policy places orders in
period 1 and 3, the respective order quantities can be computed at the beginning of a
given replenishment period via the binary search approach introduced above once
demand in previous periods has been observed. The expected total cost of this
strategy is 1006, about 3% costlier than the optimal stock age dependent
“static-dynamic uncertainty” strategy (i.e. 973.5).

However, in order to plan weekly production for a year (i.e. N = 36 weeks) this
approach is not viable due to the large number of review period combinations that
have to be assessed by simulation.
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Static-dynamic uncertainty
Computing policy parameters: a CP model

Following a modeling strategy that resembles the one discussed in Tarim and
Kingsman (2004) and Tarim and Smith (2008), Rossi et al. (2010) discussed a
heuristic CP model for solving the stochastic program under a stock age dependent
“static-dynamic uncertainty” strategy.

Numerical example The CP model is solved by using the normally distributed
demands in Table 3 from which the probability mass functions used in previous
examples were sampled.

Demand d1 d2 d3 d4
µ 22 29 26 16
σ 4 23 17 5

Table: Normally distributed demands

The resulting policy correctly suggests to place orders in period 1 and 3. The
estimated expected total cost of this strategy, i.e. objective function of the CP model
at optimality, is 951, that is 5% less than the actual cost (i.e. 1006) we observe when
we adopt this replenishment plan and we compute order quantities by using the brute
force strategy.
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Computational experience

We consider a demand that is normally distributed in each period of the planning
horizon. In the following patterns

Pattern
1 → 8, 9.5, 2, 9, 8, 1.5, 6.5, 8, 9, 3, 1.5, 6
2 → 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
3 → 6, 7.3, 8.5, 9, 8.5, 7.3, 6, 4.7, 3.5, 3, 3.5, 4.7
4 → 1.5, 2, 3.5, 6, 8, 8.5, 9, 10.5, 9.5, 6.5, 5, 2
5 → 19, 9.5, 0.4, 0.8, 0.3, 1.5, 8, 9.5, 11, 3.5, 1.5, 7

figures represent expected demand in ’00 units for each of the twelve periods in the
planning horizon. The five patterns considered represent erratic (1), stationary (2),
seasonal (3), life cycle (4), highly erratic (5) demand, respectively. The model
parameters are N = 12, M = 2 (shelf life of 3 periods), and a = 3000, h = 1, u = 2.
The remaining parameters range in the following sets, α = {0.90, 0.95, 0.98},
w = {0, 2, 4}, and σdi

= {1/3, 1/4, 1/10}, where σdi
denotes the standard deviation

of the demand in period i = 1, . . . , N .

We compared the policies produced by the CP model against those obtained via the
brute force approach. Expected total cost of these policies has been estimated by
simulation. In the estimation of the expected total cost we allowed a maximum error
of ±1% at 95% confidence.
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Computational experience
Goodness of CP model policies

The average cost difference observed is 0.21%; most of the dispersion lies within
±1%. This shows that the CP model generates near optimal policies.
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Figure: Cost difference (in percentage of the optimum policy cost)
between CP policies and optimum policies obtained with the brute force
approach.
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Computational experience
Cost approximation of the CP model

We also investigated how the cost predicted by the CP model approximates the actual
cost of the policy generated. From these results it is clear that the CP model tends to
underestimate costs. However, it is apparent that this underestimation is very low, in
fact, on average, the actual cost is underestimated by -0.68%.
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Conclusions

We considered the periodic-review, single-location, single-product,
production/inventory control problem under non stationary
demand and service-level constraints. The product is perishable
and has a fixed shelf life. Costs comprise fixed ordering costs and
inventory holding costs.

For this inventory system we discussed a number of control policies
that may be adopted.

For one of these policies, i.e. stock-age dependent static-dynamic
uncertainty, we assess the quality of an approximate Constraint
Programming (CP) model for computing near optimum policy
parameters.

Our results suggest that the CP model not only generates near
optimal policies, but also provides a good approximation of the
cost of these policies.
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