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Deterministic Lot sizing
Lot sizing under time-varying demand

◮ We consider a planning horizon comprising N periods
(periodic review)

◮ demand rate is given in the form dj for j = 1, . . . , N

◮ no shortage allowed

◮ the entire requirement of each period must be available at
the beginning of the period

◮ orders are placed and immediately received at the beginning
of a period (zero lead time)

◮ no capacity restrictions

◮ fixed production/setup cost K

◮ inventory holding cost h/(unit · period) charged on
inventory level at the end of a period, after demand has
occurred
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Deterministic Lot sizing
Lot sizing under time-varying demand

Example: the forecasts for the demand of an item are given
below for the upcoming 5 months

Month 1 2 3 4 5
Demand rate (units/month) 34 45 65 56 87

The fixed cost for a replenishment is K = 100 $.

Cost of carrying item in inventory is h = 1 $/(unit · month).

Note that the average demand per month is d = 57.4
units/month.
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Deterministic Lot sizing
Lot sizing under time-varying demand

Possible solution strategies:

◮ solve the problem to optimality: Wagner-Whitin algorithm

◮ replace the time-varying demand with the average demand
over the planning horizon and compute the associated
Economic Order Quantity (EOQ)

◮ adopt a simple heuristic strategy: Silver-Meal algorithm
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Deterministic Lot sizing
Lot sizing under time-varying demand: Wagner-Whitin algorithm

Solve the problem to optimality: Wagner-Whitin algorithm.1

Build a directed acyclic graph for all possible replenishment
cycles (i, j), with associated cost c(i, j).

i j

c(i,j)

1 N

1H. M. Wagner and T. Whitin, “Dynamic version of the economic lot size
model”, Management Science, Vol. 5, pp. 89—96, 1958
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Inventory Management
Lot sizing under time-varying demand: Wagner-Whitin algorithm

Obtain the optimal solution via dynamic programming (shortest
path algorithm).

100

145 156

1 2 3 4 5 6

[-,0] [1,145] [3,301] [5,401]

In this case the optimal plan is: to order in period 1 to cover
demand in period 1 and 2, to order in period 3 to cover demand in
period 3 and 4, and finally to order in period 5 to cover demand in
period 5. The cost of this plan is 401 $.
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Deterministic Lot sizing
Lot sizing under time-varying demand: EOQ strategy

Replace the time-varying demand with the average demand
over the planning horizon and use the EOQ strategy.

Recall that the EOQ is

Q∗ =

√
2ad

h
=

√
2 · 100 · 57.4

1
= 107.14 units

and the total relevant cost per unit time is

c(Q∗) =
√
2adh =

√
2 · 100 · 57.4 · 1 = 107.14 $/month

since the planning horizon comprises N = 5 months, the total
cost over the horizon is 107.14 · 5 = 535.7 Note that this is not
the actual cost we will face, but only a rough estimate!

7/63



Deterministic Lot sizing
Lot sizing under time-varying demand: Silver-Meal algorithm I

Adopt a simple heuristic strategy: Silver-Meal algorithm.2 This heuristics selects the
replenishment quantity in such a way as to myopically minimize the total relevant
costs per unit time for the duration of the replenishment cycle.

Month 1 2 3 4 5
Demand rate (units/month) 34 45 65 56 87

Cycle c(1, 2) c(1, 3) c(1, 4)
Cost per unit time 100/1 = 100 145/2 = 72.5 275/3 = 91.66

c(1, 4) > c(1, 3), therefore we issue an order of 79 units in period 1, to cover demand
in periods 1 and 2.

2E. A. Silver and H. C. Meal, “A Heuristic for Selecting Lot Size Quantities ...”,
Production and Inventory Management, 14(2):64—75, 1973
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Deterministic Lot sizing
Lot sizing under time-varying demand: Silver-Meal algorithm II

Adopt a simple heuristic strategy: Silver-Meal algorithm.3 This heuristics selects the
replenishment quantity in such a way as to myopically minimize the total relevant
costs per unit time for the duration of the replenishment cycle.

Month 1 2 3 4 5
Demand rate (units/month) 34 45 65 56 87

Cycle c(3, 4) c(3, 5) c(3, 6)
Cost per unit time 100/1 = 100 156/2 = 78 330/3 = 110

c(3, 6) > c(3, 5), therefore we issue an order of 121 units in period 3, to cover demand
in periods 3 and 4.

Finally, since period 5 is the last period in our horizon, we issue an order in period 5 to
cover demand during this period.

Incidentally, this is the same plan obtained via the optimal approach.

3E. A. Silver and H. C. Meal, “A Heuristic for Selecting Lot Size Quantities ...”,
Production and Inventory Management, 14(2):64—75, 1973
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Stochastic lot-sizing
The newsboy problem
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Stochastic lot-sizing
The newsboy problem
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Stochastic lot-sizing
The newsboy problem
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Stochastic lot-sizing
The newsboy problem
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Stochastic lot-sizing
The newsboy problem
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Stochastic lot-sizing
The newsboy problem

Consider

◮ d: a one-period random demand that follows a probability
distribution f(d)

◮ h: unit holding cost

◮ p: unit penalty cost

Let I be the end of period inventory and

g(I) = hI+ + pI−,

where I+ = max(I, 0) and I− = −min(I, 0).

The expected total cost is G(Q) = E[g(Q− d)], where E[·]
denotes the expected value.
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Stochastic lot-sizing
The newsboy problem

Define:

E[I+] = E[max(Q− d, 0)]: complementary first order loss function
E[I−] = E[max(d−Q, 0)]: first order loss function

The expected total cost comprises two separable components

G(Q) = E[g(Q − d)] = hE[I+] + pE[I−]

5 10 15 20 25 30
Q
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cost

p E@I-D

h E@I+D

h E@I+D+p E@I-D

d = Normal(10, 5)
h =$1
p =$5
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Stochastic lot-sizing
The first order loss function

Consider a continuous random variable ω with support over R,
probability density function gω(x) : R → (0, 1) and cumulative
distribution function Gω(x) : R → (0, 1).

The first order loss function can be rewritten as

L(x, ω) =
∫ ∞

−∞
max(t− x, 0)gω(t) dt =

∫ ∞

x
(t− x)gω(t) dt. (1)

The complementary first order loss function can be rewritten as

L̂(x, ω) =
∫ ∞

−∞
max(x− t, 0)gω(t) dt =

∫ x

−∞
(x− t)gω(t) dt. (2)

Lemma
L(x, ω) and L̂(x, ω) are convex in x.
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Stochastic lot-sizing
General framework

minE[TC] =

∫

d1

∫

d2

. . .

∫

dN

N∑

t=1

(Kδt + hmax(It, 0) + vQt)·

g1(d1)g2(d2) . . . gN (dN ) d(d1)d(d2) . . . d(dN )

subject to, for t = 1, . . . N

It = I0 +

t∑

i=1

(Qi − di)

δt =

{
1 if Qt > 0,
0 otherwise

Qi ≥ 0, δt ∈ {0, 1}
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Stochastic lot-sizing
Penalty cost

minE[TC] =

∫

d1

∫

d2

. . .

∫

dN

N∑

t=1

(Kδt + hmax(It, 0) + pmax(−It, 0) + vQt)·
g1(d1)g2(d2) . . . gN (dN ) d(d1)d(d2) . . . d(dN )

subject to, for t = 1, . . . N

It = I0 +

t∑

i=1

(Qi − di)

δt =

{
1 if Qt > 0,
0 otherwise

Qi ≥ 0, δt ∈ {0, 1}
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Problem parameters
We classify possible control strategies according to the taxonomy
discussed in

J. H. Bookbinder and J. Y. Tan. Strategies for the probabilistic
lot-sizing problem with service-level constraints.
Management Science, 34:1096–1108, 1988

Normally distributed demand with coefficient of variation

cv =
σt

µt
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Static uncertainty

Charles R. Sox. Dynamic lot sizing with random demand and
non-stationary costs.
Operations Research Letters, 20(4):155–164, May 1997
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Static uncertainty

Charles R. Sox. Dynamic lot sizing with random demand and
non-stationary costs.
Operations Research Letters, 20(4):155–164, May 1997
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Static uncertainty

Charles R. Sox. Dynamic lot sizing with random demand and
non-stationary costs.
Operations Research Letters, 20(4):155–164, May 1997
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Static uncertainty

Charles R. Sox. Dynamic lot sizing with random demand and
non-stationary costs.
Operations Research Letters, 20(4):155–164, May 1997
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Static-dynamic uncertainty

J. H. Bookbinder and J. Y. Tan. Strategies for the probabilistic
lot-sizing problem with service-level constraints.
Management Science, 34:1096–1108, 1988
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Static-dynamic uncertainty

J. H. Bookbinder and J. Y. Tan. Strategies for the probabilistic
lot-sizing problem with service-level constraints.
Management Science, 34:1096–1108, 1988

1 2 3 4 5 6 7 8 9 10 11 12
Period0

100

200

300

400
Inventory level

R2

S2

26/63



Static-dynamic uncertainty

J. H. Bookbinder and J. Y. Tan. Strategies for the probabilistic
lot-sizing problem with service-level constraints.
Management Science, 34:1096–1108, 1988

1 2 3 4 5 6 7 8 9 10 11 12
Period0

100

200

300

400
Inventory level

R2

S2

27/63



Static-dynamic uncertainty

J. H. Bookbinder and J. Y. Tan. Strategies for the probabilistic
lot-sizing problem with service-level constraints.
Management Science, 34:1096–1108, 1988
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Dynamic uncertainty

H. Scarf. The optimality of (s, S) policies in the dynamic inventory
problem.
In K. J. Arrow, S. Karlin, and P. Suppes, editors, Mathematical
Methods in the Social Sciences, chapter 13, pages 196–202.
Stanford University Press, Stanford, CA, 1960
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Dynamic uncertainty

H. Scarf. The optimality of (s, S) policies in the dynamic inventory
problem.
In K. J. Arrow, S. Karlin, and P. Suppes, editors, Mathematical
Methods in the Social Sciences, chapter 13, pages 196–202.
Stanford University Press, Stanford, CA, 1960
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Dynamic uncertainty

H. Scarf. The optimality of (s, S) policies in the dynamic inventory
problem.
In K. J. Arrow, S. Karlin, and P. Suppes, editors, Mathematical
Methods in the Social Sciences, chapter 13, pages 196–202.
Stanford University Press, Stanford, CA, 1960
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Dynamic uncertainty

H. Scarf. The optimality of (s, S) policies in the dynamic inventory
problem.
In K. J. Arrow, S. Karlin, and P. Suppes, editors, Mathematical
Methods in the Social Sciences, chapter 13, pages 196–202.
Stanford University Press, Stanford, CA, 1960
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Dynamic uncertainty
Let c(y) denote the production/ordering cost

c(y) =

{
K + vy if y > 0
0 otherwise

where y denote the stock level immediately after purchases are delivered.

The expected holding and shortage cost for a generic period are given by

L(y) = h

∫ y

0
(y − ω)g(ω)dω + p

∫ ∞

y

(ω − y)g(ω)dω

where gt(·) denotes the probability density function of the demand in period t.

Let the initial inventory be x and Cn(x) represent the expected total cost over the
n-periods planning horizon if provisioning is done optimally then Cn(x) satisfies

Cn(x) = min
y≥x

{
c(y − x) + Ln(y) +

∫ ∞

0
Cn−1(y − ω)gn(ω)dω

}

If yn(x) is the argument minimising the above functional equation, then yn(x) − x
denotes the optimal initial purchase.
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Dynamic uncertainty

The simple form of the optimal control policy stems from the study of the following
function

Gn(y) = vy + Ln(y) +

∫ ∞

0
Cn−1(y − ω)gn(ω)dω

More specifically, Scarf proved that Gn(y) is K-convex.

Definition
Let K ≥ 0, and let f(x) be a differentiable function, f(x) is K-convex if

K + f(a+ x)− f(x) − af ′(x) ≥ 0

for all positive a and all x.

This definition can be extended to a non differentiable function.
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Dynamic uncertainty

We shall now illustrate graphically the notion of K-convexity on a
simple numerical example.

Consider a planning horizon of n = 4 period and a demand dt
normally distributed in each period t with mean
µt ∈ {20, 40, 60, 40}, for period t = 1, . . . , n respectively.

The standard deviation σt of the demand in period t is equal to
0.25µt.

Other problem parameters are K = 100, h = 1 and p = 10; to
better conceptualise the example we let v = 0.
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Dynamic uncertainty

We plot Gn(y) for an initial inventory y ∈ (0, 200).

Opening inventory level

0 25 50 75 100 125 150 175 200

Expected total cost

250

350

450

Sn = 70sn = 14

362.52

262.52

K = 100

Gn(y)
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Dynamic uncertainty

The fact that Gn(y) is K-convex ensures that ripples in the
nonlinear cost function do not affect the existence of a unique
reorder point sn ≤ Sn, since their height will never exceed K.

It follows that, under general nonstationary settings, the optimal
policy can be described via n pairs (si,Si), where si denotes the
reorder point and Si the order-up-to-level for period i.

In practice, Sn denotes the absolute minimum of Gn(y) and
sn < Sn is the unique value such that K +Gn(Sn) = Gn(sn).

Unfortunately, computing optimal policy parameters (si,Si) is
computationally expensive (dynamic programming).
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Dynamic uncertainty
Askin’s heuristic for computing (s,S) policy parameters

Ronald G. Askin. A procedure for production lot sizing with
probabilistic dynamic demand.
A I I E Transactions, 13(2):132–137, June 1981
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Dynamic uncertainty
Bollapragada & Morton’s heuristic for computing (s,S) policy parameters

Srinivas Bollapragada and Thomas E. Morton. A simple heuristic
for computing nonstationary (s, s) policies.
Oper. Res., 47(4):576–584, April 1999

Yu-Sheng Zheng and A. Federgruen. Finding optimal (s, s) policies
is about as simple as evaluating a single policy.
Operations Research, 39(4):654–665, 1991
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Dynamic uncertainty
Rossi et al.’s heuristic for computing (s,S) policy parameters

Key insight: the static-dynamic uncertainty is a good proxy to the
dynamic uncertainty policy from a cost perspective.

Gozdem Dural-Selcuk, Onur A. Kilic, S. Armagan Tarim, and Roberto Rossi. A
comparison of methods for inventory problems with non-stationary stochastic
demands.
Unpublished, 2014
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Dynamic uncertainty
Rossi et al.’s heuristic for computing (s,S) policy parameters

Good news: we have just published a very effective method for
computing static-dynamic uncertainty policies!

Roberto Rossi, Onur A. Kilic, and S. Armagan Tarim. Piecewise linear approximations
for the static-dynamic uncertainty strategy in stochastic lot-sizing.
Omega, August 2014

Roberto Rossi, S. Armagan Tarim, Steven Prestwich, and Brahim Hnich. Piecewise
linear lower and upper bounds for the standard normal first order loss function.
Applied Mathematics and Computation, 231:489–502, March 2014
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The first order loss function
Piecewise linear approximations

We introduce a well-known inequality from stochastic programming

Peter Kall and Stein W. Wallace. Stochastic Programming (Wiley
Interscience Series in Systems and Optimization).
John Wiley & Sons, August 1994, p. 167.

Theorem (Jensen’s inequality)

Consider a random variable ω with support Ω and a function
f(x, s), which for a fixed x is convex for all s ∈ Ω, then

E[f(x, ω)] ≥ f(x,E[ω]).
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The first order loss function
The newsboy problem & Jensen’s inequality

For a fixed Q, the total cost is convex for all values in the support
of d.

gQ(d) = g(Q− d) = hmax(Q− d, 0) + pmax(d−Q, 0))
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Q = 10
h =$1
p =$5
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The first order loss function
The newsboy problem & Jensen’s inequality

Define:

E[I+] = E[max(Q− d, 0)]: complementary first order loss function
E[I−] = E[max(d−Q, 0)]: first order loss function

The expected total cost can be bounded from below as follows.

hE[I+]+pE[I−] ≥ hmax(Q−E[d], 0)+pmax(E[d]−Q, 0) = g(Q−E[d])

5 10 15 20 25 30
Q

10

20

30

40

50

cost

h maxHQ-E@dD,0L+p maxHE@dD-Q,0L

h E@I+D+p E@I-D

d = Normal(10, 5)
E[d] = 10
h =$1
p =$5
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The first order loss function
Bounding techniques

Define:

E[I+] = E[max(Q− d, 0)]: complementary first order loss function

The complementary first order loss function can be bounded
from below as follows.

E[I+] ≥ hmax(Q− E[d], 0)
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Q
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cost
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d = Normal(10, 5)
E[d] = 10
h =$1
p =$5
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The first order loss function
Bounding techniques

Define:

E[I−] = E[max(d−Q, 0)]: first order loss function

The first order loss function can be bounded from below as
follows.

E[I−] ≥ max(E[d]−Q, 0)
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Q
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d = Normal(10, 5)
E[d] = 10
h =$1
p =$5
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The first order loss function
Bounding techniques

Let gω(·) denote the probability density function of ω and consider
a partition of the support Ω of ω into N disjoint compact
subregions Ω1, . . . ,ΩN . We define, for all i = 1, . . . , N

pi = Pr{ω ∈ Ωi} =

∫

Ωi

gω(t) dt

E[ω|Ωi] =
1

pi

∫

Ωi

tgω(t) dt

Theorem

E[f(x, ω)] ≥
N∑

i=1

pif(x,E[ω|Ωi])
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The first order loss function
Bounding techniques

For the (complementary) first order loss function (L̂lb(x, ω)) Llb(x, ω) the lower
bound

E[f(x, ω)] ≥
N∑

i=1

pif(x,E[ω|Ωi])

is a piecewise linear function with N + 1 segments.

Consider the bound presented above and let f(x, ω) = max(x− ω, 0),

L̂lb(x, ω) =

N∑

i=1

pi max(x− E[ω|Ωi], 0)

this function is equivalent to

L̂lb(x, ω) =






0 −∞ ≤ x ≤ E[ω|Ω1]
p1x − p1E[ω|Ω1] E[ω|Ω1] ≤ x ≤ E[ω|Ω2]
(p1 + p2)x − (p1E[ω|Ω1] + p2E[ω|Ω2]) E[ω|Ω2] ≤ x ≤ E[ω|Ω3]

.

.

.

.

.

.
(p1 + p2 + . . . + pN )x − (p1E[ω|Ω1] + . . . + pNE[ω|ΩN ]) E[ω|ΩN−1] ≤ x ≤ E[ω|ΩN ]

which is piecewise linear in x with breakpoints at E[ω|Ω1],E[ω|Ω2], . . . ,E[ω|ΩN ].
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The first order loss function
Bounding techniques

pi = Pr{ω ∈ Ωi} =

∫

Ωi

gω(t) dt

E[ω|Ωi] =
1

pi

∫

Ωi

tgω(t) dt

pi = 0.5841376

E@Ω WiD=8.56168
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The first order loss function
Bounding techniques

pi = Pr{ω ∈ Ωi} =

∫

Ωi

gω(t) dt

E[ω|Ωi] =
1

pi

∫
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pi = 0.158624
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The first order loss function
Bounding techniques

pi = Pr{ω ∈ Ωi} =

∫

Ωi

gω(t) dt

E[ω|Ωi] =
1

pi

∫

Ωi

tgω(t) dt
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The first order loss function
Bounding techniques

pi = Pr{ω ∈ Ωi} =

∫

Ωi

gω(t) dt

E[ω|Ωi] =
1

pi
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The first order loss function
Bounding techniques

pi = Pr{ω ∈ Ωi} =

∫

Ωi

gω(t) dt

E[ω|Ωi] =
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The first order loss function
Bounding techniques

pi = Pr{ω ∈ Ωi} =

∫

Ωi

gω(t) dt

E[ω|Ωi] =
1

pi

∫

Ωi

tgω(t) dt
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Static-dynamic uncertainty
MILP model under penalty cost

We introduce: Ĩlbt and Ĩub
t for t = 1, . . . , N , which represent, respectively, a lower and an upper bound to the

true value of E[max(It, 0)].

We introduce: B̃lb
t and B̃ub

t for t = 1, . . . , N , which represent a lower and upper bound, respectively, for the
true value of E[−min(It, 0)].

E[TC] = −vI0 + v

N∑

t=1

d̃t + min
N∑

t=1

(Kδt + hĨ
lb
t + pB̃

lb
t ) + vĨN

subject to, for t = 1, . . . N

Ĩt + d̃t − Ĩt−1 ≥ 0

Ĩt + d̃t − Ĩt−1 ≤ δtMt

t∑

j=1

Pjt = 1

Pjt ≥ δj −
t∑

k=j+1

δk j = 1, . . . , t

Pjt ∈ {0, 1} j = 1, . . . , t

δt ∈ {0, 1}
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Static-dynamic uncertainty
MILP model under penalty cost

We introduce the following constraints in the model

Ĩ
lb
t ≥ Ĩt

i∑

k=1

pk −
t∑

j=1




i∑

k=1

pkE{Z|Ωi}



Pjtσdj...t
t = 1, . . . , N; i = 1, . . . ,W

where σdj...t
denotes the standard deviation of dj + . . . + dt and Ĩlbt ≥ 0.

Ĩ
ub
t ≥ Ĩt

i∑

k=1

pk −
t∑

j=1




i∑

k=1

pkE{Z|Ωi}



Pjtσdj...t
+

t∑

j=1

e
W

Pjtσdj...t

t = 1, . . . , N,

i = 1, . . . ,W ;

where Ĩub
t ≥ eW and eW denotes the maximum approximation error associated with a partition comprising W

regions.

B̃
lb
t ≥ −Ĩt + Ĩt

i∑

k=1

pk −
t∑

j=1




i∑

k=1

pkE{Z|Ωi}



Pjtσdj...t

t = 1, . . . , N,

i = 1, . . . ,W ;

where B̃ub
t ≥ −Ĩt and

B̃
ub
t ≥ −Ĩt+Ĩt

i∑

k=1

pk−
t∑

j=1




i∑

k=1

pkE{Z|Ωi}



Pjtσdj...t
+

t∑

j=1

e
W

Pjtσdj...t

t = 1, . . . , N,

i = 1, . . . ,W ;

where B̃ub
t ≥ −Ĩt + eW .
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Static-dynamic uncertainty
MILP model under penalty cost

Opening inventory level

0 25 50 75 100 125 150 175 200

Expected total cost

250

350

450

Sn = 70sn = 14

Gn(y)

Ĝn(y)
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MILP heuristic
Numerical example

Demand dt normally distributed in each period t with mean
µt ∈ {20, 40, 60, 40}.

The standard deviation σt of the demand in period t is equal to
0.25µt.

Other problem parameters are K = 100, h = 1 and p = 10, and
v = 0.

SDP — ETC: (362.2,362.9) MILP — ETC: (363.0,363.1)
t St st St st
1 70.0 14.0 70.2 15.0
2 141 29.5 53.9 29.0
3 113 58.0 116 58.1
4 53.5 28.5 53.9 29.0
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MILP heuristic
Preliminary computational results

K 5 10 20 50
v 0 0.5 1 2
p 2 5 10 15
cv 0.1 0.2 0.3

STA 10 10 10 10 10 10 10 10
LCY1 2.7 3.6 4.8 6.1 7.7 9.3 11 12.6
LCY2 15.3 16.2 16.6 16.6 16.2 15.3 14.1 12.6
SIN1 12.1 10 7.9 7 7.9 10 12.1 13
SIN2 15.7 10 4.3 2 4.3 10 15.7 18
RAND 20.9 9.1 3.3 7.9 0.2 7.6 10.9 11.5

Initial inventory set to zero, 1152 instances.
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MILP heuristic
Preliminary computational results

Method Journal Avg. opt gap

Askin AIIE Transactions 1978 2.09%
Bollapragada & Morton Operations Research 1999 3.52%
New heuristic Unpublished 0.2%
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