
A Cultural Algorithm for

POMDPs from Stochastic

Inventory Control

S. Prestwich, S. A. Tarim, R. Rossi, B. Hnich

4C/UCC, Cork

Izmir University of Economics, Turkey

Hacettepe University, Turkey

(HM’08)

introduction

POMDPs occur in many fields of AI

Reinforcement Learning (RL) algorithms and

Evolutionary Computation (EC) algorithms are

competing approaches to solving them

a powerful form of EC that has not previously

been applied to POMDPs is the cultural algo-

rithm (CA): evolving agents share knowledge

in a belief space used to guide their evolution

we describe a CA for POMDPs that hybridises

SARSA with a noisy GA that inherits EC con-

vergence properties: CURL (CUltural RL)

1

CURL’s belief space is a set of RL state-action

values Q(s, a) updated during EC exploration,

and conversely used to modify chromosomes

we use it to solve problems from stochastic in-

ventory control by finding memoryless policies

for nondeterministic POMDPs

in experiments, neither SARSA nor the GA

dominates, but the CA beats the GA, and SARSA

on highly non-Markovian instances

2

POMDPs

MDPs can model sequential decision-making in
situations where outcomes are partly random
and partly under the control of the agent

their states have the Markov property : if the
current state of the MDP at time t is known,
transitions to a new state at time t + 1 are
independent of all previous states

MDPs can be solved in polynomial time by
modelling them as linear programs, but these
are hard to solve in practice

without the Markov property we have a POMDP
which in general is computationally intractable

this can be caused by partial knowledge, eg a
robot must often navigate using only partial
knowledge of its environment

machine maintenance and planning under un-
certainty can also be modelled as POMDPs

3

when solving a POMDP we must find a pol-

icy : a strategy for selecting actions based on

observations that maximises a function of the

rewards, eg total reward

a policy is a function that maps the agent’s ob-

servation history and its current internal state

to an action

a policy may be deterministic or probabilistic:

a deterministic policy consistently chooses the

same action when faced with the same infor-

mation, while a probabilistic policy might not

a memoryless (or reactive) policy returns an

action based solely on the current observation

the problem of finding a memoryless policy

for a POMDP is NP-complete and exact algo-

rithms are very inefficient, but there are good

inexact methods

4

RL methods

TD learning algorithms such as Q-Learning &

SARSA are a standard way of finding good

policies

by Monte Carlo-like simulations they compute

a state-action value function Q : S × A → ℜ

which estimates the expected total reward for

taking a given action from a given state (some

compute a state value function V : S → ℜ)

SARSA(λ) usually outperforms two versions

of Q-learning with eligibility trace [Sutton &

Barto]

5

we take SARSA(λ) with ǫ-greedy behaviour as

a representative RL algorithm

RL algorithms have convergence proofs for MDPs,

but for some POMDPs applications they still

perform well, especially when augmented with

an eligibility trace

SARSA(0) is equivalent to SARSA, SARSA(1)

is equivalent to a Monte Carlo algorithm, 0 <

λ < 1 is a hybrid and often better than both

6

EC methods

these are an alternative approach to POMDPs,

and sometimes beat RL algorithms on highly

non-Markovian problems

we use the obvious table-based representation:

each chromosome represents a policy, each gene

a state, and each allele an action

our GA is based on the GENITOR algorithm

(steady-state, elitist, replaces least-fit chromo-

some by new one) with uniform crossover ap-

plied with a probability pc (if not applied then

1 parent is selected and mutated)

7

EC methods

mutation is applied to a chromosome once with

probability pm, twice with probability p2
m, three

times with probability p3
m...

nondeterminism in the POMDP causes noise in

the GA’s fitness function, so we average fitness

over S samples S: a Noisy GA (NGA)

NGAs are usually generational but steady-state

NGAs do exist

8

cultural algorithms

a powerful form of EC: cultural algorithms (CAs)

agents share knowledge in a belief space to

form a consensus (distinct from POMDP belief

space)

a CA has an acceptance function that deter-

mines which individuals in the population are

allowed to adjust the belief space

the beliefs are conversely used to influence the

evolution of the population

these hybrids of EC and Machine Learning have

been shown to converge more quickly than EC

alone on several applications

9

CAs are based on concepts used in sociology

and archaeology to model cultural evolution

by pooling knowledge gained by individuals in

a body of cultural knowledge, or belief space,

convergence rates can sometimes be improved

they have been applied to constrained optimi-

sation, multiobjective optimisation, scheduling

and robot soccer, but not to POMDPs, nor

have they utilised RL

10

CURL

we propose a new cultural hybrid of RL and EC
for solving POMDPs: CUltural Reinforcement

Learning (CURL)

it is straightforward and can be applied to dif-
ferent RL and EC algorithms

1 set of RL state-action values Q(s, a) is ini-
tialised as in the RL algorithm, and are the CA
belief space

a population is initialised as in the EC algo-
rithm

the EC algorithm is executed as usual, but
each new chromosome is altered by, and used
to alter, the Q(s, a)

on generating a new chromosome we replace,
with some probability pl, each allele by the cor-
responding greedy action given by the modified
Q(s, a) values

11

setting pl = 0 prevents any learning, and CURL

reduces to the EC algorithm

setting pl = 1 always updates a gene to the

corresponding Q(s, a) value, and CURL reduces

to SARSA(λ) without exploration

we treat the modified chromosome as in the

EC algorithm: fitness evaluation and place-

ment into the population

during fitness evaluation the Q(s, a) are up-

dated by bootstrapping as usual in the RL al-

gorithm, but the policy followed is that speci-

fied by the modified chromosome

12

thus in CURL, as in several other CAs, all chro-

mosomes are allowed to adjust the belief space

there is no ǫ parameter in CURL because ex-

ploratory moves are provided by EC

we combine the GENITOR-based NGA with

SARSA(λ) for our CURL implementation

fitness is averaged over S samples (for a de-

terministic POMDP only one sample is needed

to obtain the fitness of a chromosome, so we

can set S = 1 to obtain a CURL hybrid of

SARSA(λ) and GENITOR)

13

CURL pseudo-code

CURL(S,P ,pc,pm,α,λ,pl):
(create population of size P

evaluate population using S samples
initialise the Q(s, a)
while not(termination condition)
(generate an offspring O using pc, pm

update O using pl and the Q(s, a)
call SARSA(λ, α,O) S times to estimate

O fitness and bootstrap the Q(s, a)
replace least-fit chromosome by O

)
output fittest chromosome

)

14

CURL convergence

for POMDPS, unlike MDPs, suboptimal poli-

cies can form local optima in policy space

this motivates the use of global search tech-

niques such as EC, which are less likely to be-

come trapped in local optima

hill-climbing has been combined with GAs to

form memetic algorithms with faster conver-

gence than a pure GA, and this was a motiva-

tion for CURL’s design

but if bootstrapping is used then optimal poli-

cies are not necessarily stable: that is, an op-

timal policy might not attract the algorithm

so a hybrid might not be able to find an optimal

policy even if it escapes all local optima

15

luckily, if pl < 1 and the underlying EC algo-

rithm is convergent then so is CURL: if pl < 1

then there is a non-zero probability that no al-

lele is modified by the Q(s, a), in which case

CURL behaves exactly like the EC algorithm

(this is not true of all hybrids)

our GA is convergent (modulo averaging) be-

cause every gene in a new chromosome can

potentially be mutated to an arbitrary allele,

so the CURL instantiation is convergent

note

we should now evaluate CURL on standard

POMDPs

but this work is motivated by the need to solve

large, complex inventory control (IC) problems

that do not succumb to more traditional meth-

ods

we know of no method in the IC literature that

can optimally solve our problem in a reasonable

time

so we test CURL on POMDPs from stochastic

IC: we believe that the problem we tackle has

not previously been considered as a POMDP

16

stochastic IC

the problem we tackle is as follows:

given a planning horizon of N periods and a

demand for each period t ∈ {1, . . . , N}, which

is a random variable with a given probability

density function (assumed to be normal)

demands occur instantaneously at the begin-

ning of each time period and are non-stationary

(may vary from period to period), and de-

mands in different periods are independent

costs...

17

• a fixed delivery cost a is incurred for each

order (even an order of 0)

• a linear holding cost h is incurred for each

product unit carried in stock from one pe-

riod to the next

• a linear stockout cost s is incurred for each

period in which the net inventory is nega-

tive (it is not possible to sell back excess

items to the vendor at the end of a period)

we must find a replenishment plan that min-

imizes expected total cost over the planning

horizon

18

policies

different inventory control policies can be adopted

to cope with this and other problems

a policy states the rules used to decide when

orders are to be placed and how to compute

the replenishment lot-size for each order, eg

the replenishment cycle policy (R, S)

non-stationary demand so it has the form (Rn, Sn)

where Rn denotes the length of the nth replen-

ishment cycle and Sn the order-up-to-level for

replenishment: we must populate both sets

the order quantity for replenishment cycle n is

determined only after the demand in former

periods has been realized

19

the order quantity is computed as the amount

of stock required to raise the closing inventory

level of replenishment cycle n − 1 up to level

Sn

(R, S) policy yields plans of higher cost than

the optimum, but it reduces planning insta-

bility, and is appealing when items are ordered

from the same supplier or require resource shar-

ing

Rn−1 Rn

Qn Di+...+Dj

Bij

Sn

20

both RL and EC have been applied to several

IC problems, neither seems to have been ap-

plied to (R, S)

actually, there are efficient algorithms which

find optimal policies (under reasonable simpli-

fying assumptions), but if we complicate the

problem (add order capacity constraints, drop

the assumption of independent demands...) then

these efficient algorithms become unusable

so (R, S) is useful as a representative of a fam-

ily of more complex problems

21

POMDP model

(R, S) can be modelled as a POMDP as fol-

lows:

• state: period n

• action: choice of an order-up-to level or

the lack of an order (denoted by N)

• reward rn to be minus the total cost in-

curred in period n

• rewards are undiscounted (do not decay

with time)

• the problem is episodic (has well-defined

start and end states)

22

• the POMDP is nondeterministic (the re-

wards are randomised)

• its solution is a policy that is deterministic

and memoryless (actions are taken solely

on the basis of the agent’s current obser-

vations)

the problem has an underlying MDP: if we in-

clude current stock level in the state, we have

all the information we need to make an optimal

decision

but the (R, S) policy does not make optimal

decisions: instead it fixes order-up-to levels in-

dependently of the stock level.

this is slightly unusual as a POMDP:

• all actions from a state n lead to the same

state n+1 (though they have different ex-

pected rewards): different actions usually

lead to different states

• many applications are non-Markovian be-

cause of limited available information, but

here we choose to make it non-Markovian

by discarding information for an application-

specific reason: to reduce planning insta-

bility

23

but we believe that (R, S) is an ideal bench-

mark for RL and EC methods: easy to describe

and implement, hard to solve optimally, have

practical importance, and it turns out that nei-

ther RL nor EC dominates

notes:

• we cannot use techniques such as forms

of memory (eg a recurrent neural network)

because the policy would not then be mem-

oryless, so not (R, S)

• similarly we cannot use stochastic policies,

which can be arbitrarily more efficient than

deterministic policies

24

experiments

we compare SARSA(λ), the NGA and CURL

on 5 benchmark problems with 120 periods,

and 30 possible actions from each state: 29

different order-up-to levels at each period, plus

the N no-order option

none of the algorithms find optimal policies

within 108 simulations so these are challeng-

ing (a MIP approach also failed given several

hours), but they have a special form so we can

find optimal policies

we also generate five additional instances by

adding an order capacity constraint to each:

this problem is NP-hard and we know of no

method that can solve it to optimality in a rea-

sonable time (so we do not know the optimum

policies)

25

details:

• for NGA and CURL we use a special mu-

tation operator: mutate a gene to N with

50% probability, otherwise to a random order-

up-to level

• for SARSA and CURL we initialise all Q(s, a)

to the optimistic value of 0, to encourage

early exploration

• for SARSA we vary ǫ inversely with time

• we tune each algorithm to the middle in-

stance by hill climbing in parameter space

• we set λ = 0 in SARSA: higher values made

little difference

26

results

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 0 200000 400000 600000 800000 1e+06

co
st

simulations

SARSA
NGA

CURL

 12000

 13000

 14000

 15000

 16000

 17000

 18000

 19000

 20000

 0 200000 400000 600000 800000 1e+06

co
st

simulations

SARSA
NGA

CURL

 17000

 18000

 19000

 20000

 21000

 22000

 23000

 24000

 0 200000 400000 600000 800000 1e+06

co
st

simulations

SARSA
NGA

CURL

 24000

 26000

 28000

 30000

 32000

 34000

 0 200000 400000 600000 800000 1e+06

co
st

simulations

SARSA
NGA

CURL

 34000

 36000

 38000

 40000

 42000

 44000

 46000

 48000

 50000

 0 200000 400000 600000 800000 1e+06

co
st

simulations

SARSA
NGA

CURL

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 0 200000 400000 600000 800000 1e+06

co
st

simulations

SARSA
NGA

CURL

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 0 200000 400000 600000 800000 1e+06

co
st

simulations

SARSA
NGA

CURL

 17000

 18000

 19000

 20000

 21000

 22000

 23000

 24000

 25000

 26000

 0 200000 400000 600000 800000 1e+06

co
st

simulations

SARSA
NGA

CURL

 24000

 26000

 28000

 30000

 32000

 34000

 0 200000 400000 600000 800000 1e+06

co
st

simulations

SARSA
NGA

CURL

 34000

 36000

 38000

 40000

 42000

 44000

 46000

 48000

 50000

 0 200000 400000 600000 800000 1e+06

co
st

simulations

SARSA
NGA

CURL

27

neither SARSA(λ) nor NGA dominates the other,

though SARSA(λ) is generally better (this might

be caused by our choice of instances)

CURL is uniformly better than NGA, so some-

times better than SARSA(λ)

neither EC nor RL dominates on POMDPs,

but EC is better on highly non-Markovian prob-

lems, so where NGA beats SARSA(λ) we as-

sume these are highly non-Markovian — so

CURL is promising for such problems

(note: adding biased mutation to SARSA(λ)

worsens its performance)

28

related work

several approaches can be seen as hybrids of

EC and RL:

• Learning Classifier Systems use EC to adapt

their representation of the RL problem, and

apply RL via the EC fitness function

• Population-Based RL uses RL techniques

to improve chromosomes, as in a memetic

algorithm — similar to CURL but a pro-

posal only

• GAQ-Learning uses Q-Learning once only

in a preprocessing phase to generate Q(s, a)

values, then uses a memetic algorithm with

the Q(s, a) values to evaluate the chromo-

somes

29

• Q-Decomposition combines separate RL agents,

and an arbitrator combines their recom-

mendations

• in [Iglesias et al.] a GA & RL are com-

bined to solve a robot navigation problem:

apply greedy policy until encountering dif-

ficulty; use fittest chromosome to update

the Q(s, a) in several RL iterations; use

the Q(s, a) to alter chromosomes and get

a new population; repeat (convergence is

not guaranteed)

conclusion

RL & EC are competing approaches for POMDPs

CURL hybridises them and inherits EC conver-

gence properties

we described new POMDPs from stochastic

IC, on which CURL beats EC, and on highly

non-Markovian instances beats RL

this work is part of a series of studies in solving

IC problems using systematic and randomised

methods

future work: develop CURL for more com-

plex inventory problems, and for more standard

POMDPs from AI

30

