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The Newsboy problem

Demand structure

time

inventory

o
rd

e
r 

q
u
a
n
ti
ty

: 
Q

0

single period

random demand: d



Introduction Existing approaches Confidence-based optimization Conclusions

The Newsboy problem

Demand structure

time

inventory

o
rd

e
r 

q
u
a
n
ti
ty

: 
Q

0

single period

pmf: g(d) 0.8

random demand: d



Introduction Existing approaches Confidence-based optimization Conclusions

The Newsboy problem

Demand structure

time

inventory

o
rd

e
r 

q
u
a
n
ti
ty

: 
Q

0

single period

pdf: g(d) 0.8

random demand: d



Introduction Existing approaches Confidence-based optimization Conclusions

The Newsboy problem

Cost structure
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The Newsboy problem
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The Newsboy problem

Mathematical formulation

Consider

d : a one-period random demand that follows
a probability distribution f (d)

h: unit holding cost

p: unit penalty cost

Let
g(x) = hx+ + px−,

where x+ = max(x ,0) and x− = −min(x ,0).

The expected total cost is G(Q) = E [g(Q − d)],
where E [·] denotes the expected value.
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The Newsboy problem

Solution method

If d is continuous, G(Q) is convex .
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The optimal order quantity is

Q∗ = inf{Q ≥ 0 : Pr{d ≤ Q} =
p

p + h
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The Newsboy problem

Solution method

If d is discrete (e.g. Poisson),

∆G(Q) = h − (h + p)Pr{d > j}

is non-decreasing in Q.
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Q∗ = min{Q ∈ N0 : ∆G(Q) ≥ 0}.
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The Newsboy problem

Solution method: example

Demand follows a Poisson distribution Poisson(λ),
with demand rate λ = 50.

Holding cost h = 1, penalty cost p = 3.

The optimal order quantity Q∗ is equal to 55 and
provides a cost equal to 9.1222.
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Partial demand information

Unknown distribution parameter(s)

Assume now that the demand distribution is
known, but one or more distribution parameters
are unknown.

The decision maker has access to a set of M past
realizations of the demand .

From these she has to estimate the optimal order
quantity (or quantities) and the associated cost .
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Partial demand information

Unknown distribution parameter(s)

Poisson demand, probability mass function:

λ has to be estimated from past realizations.
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Point estimates of the parameter(s)

Point estimates of the parameter(s)

Point estimates of the unknown parameters may
be obtained from the available samples by using:

maximum likelihood estimators , or

the method of moments .

Point estimates for the parameters are then used
in place of the unknown demand distribution
parameters to compute:

the estimated optimal order quantity Q̂∗, and

the associated estimated expected total cost
G(Q̂∗).
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Point estimates of the parameter(s)

Point estimates: example

M observed past demand data d1, . . . ,dM .

Demand follows a Poisson distribution
Poisson(λ), with demand rate λ.

We estimate λ using the maximum likelihood
estimator (sample mean):

λ̂ =
1
M

M∑

i=1

λi .

The decision maker employs the distribution
Poisson(λ̂) in place of the actual unknown
demand distribution.



Introduction Existing approaches Confidence-based optimization Conclusions

Point estimates of the parameter(s)

Point estimates: example

Holding cost: h = 1; penalty cost: p = 3;
observed past demand data:
{51,54,50,45,52,39,52,54,50,40}.

λ̂ = 48.7, Q̂∗ = 53 and G(Q̂∗) = 9.0035.

time

inventory

0

single period

d = Poisson(λ)

λ = 50

Q* = 55
G(Q*) = 9.1222

Q* = 53

G(Q*) = 9.0035

10 observations
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Bayesian approach

Bayesian approach

The bayesian approach infers the distribution of
parameter λ given some past observations d by
applying Bayes’ theorem as follows

p(λ|d) =
p(d |λ)p(λ)∫
p(d |λ)p(λ)dλ

where

p(λ) is the prior distribution of λ, and

p(λ|d) is the posterior distribution of λ given the
observed data d .
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Bayesian approach

Bayesian approach

The prior distribution describes an estimate of
the likely values that the parameter λ might take,
without taking the data into account. It is based on
subjective assessment and/or collateral data .

A number of methods for constructing
“non-informative priors ” have been proposed
(i.e. maximum entropy). These are meant to
reflect the fact that the decision maker ignores of
the prior distribution.

If prior and posterior distributions are in the same
family, then they are called conjugate
distributions .
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Bayesian approach

Bayesian approach [Hill, 1997]

Hill [EJOR, 1997] proposes a bayesian approach
to the Newsvendor problem .

He considers a number of distributions (Binomial,
Poisson and Exponential) and derives posterior
distributions for the demand from a set of given
data.

He adoptes uninformative priors to express an
initial state of complete ignorance of the likely
values that the parameter might take.

By using the posterior distribution he obtaines an
estimated optimal order quantity and the
respective estimated expected total cost .
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Bayesian approach

Bayesian approach: example

Holding cost: h = 1; penalty cost: p = 3;
observed past demand data:
{51,54,50,45,52,39,52,54,50,40}.

Q̂∗ = 54 and G(Q̂∗) = 9.4764.

time

inventory

0

single period

d = Poisson(λ)
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Q* = 55 G(Q*) = 9.1222
Q* = 54

G(Q*) = 9.4764

10 observations
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Drawbacks of existing approaches

Drawbacks of existing approaches

Only provide point estimates of the order
quantity and of the expected total cost.

Do not quantify the uncertainty associated with
this estimate.

How do we distinguish a case in which we
only have 10 past observations vs a case with
1000 past observations?

The bayesian approach produces results that are
“biased ” by the selection of the prior; the posterior
distribution may not satisfy Kolmogorov axioms.

J. Neyman. Outline of a theory of statistical estimation based on the classical theory of
probability. Philosophical Transactions of the Royal Society of London, 236:333—380, 1937
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An alternative approach

An alternative approach

We propose a solution method based on
confidence interval analysis [Neyman, 1937].

Observation
Since we operate under partial information, it may
not be possible to uniquely determine “the” optimal
order quantity and the associated exact cost.

We argue that a possible approach consists in
determining a range of “candidate” optimal order
quantities and upper and lower bounds for the
cost associated with these quantities.

This range will contain the real optimum according
to a prescribed confidence probability α.
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An alternative approach

An alternative approach
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Poisson demand

Confidence interval for λ

Consider a set of M samples di drawn from a
random demand d that is distributed according to
a Poisson law with unknown parameter λ.

We construct a confidence interval for the
unknown demand rate λ as follows

λlb = min{λ|Pr{Poisson(Mλ) ≥ d̄} ≥ (1 − α)/2},
λub = max{λ|Pr{Poisson(Mλ) ≤ d̄} ≥ (1 − α)/2},

where d̄ =
∑M

i=0 di .

A closed form expression for this interval has
been proposed by Garwood [1936] based on the
chi-square distribution.
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Poisson demand

Confidence interval for λ: example

Consider the set of 10 samples

{51,54,50,45,52,39,52,54,50,40},

and α = 0.9.

The confidence interval for the unknown demand
rate λ is

(λlb, λub) = (45.1279,52.4896),

Note that, by chance, this interval covers the
actual demand rate λ = 50 used to generate the
samples.
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Poisson demand

Candidate order quantities

Let Q∗

lb be the optimal order quantity for the
Newsvendor problem under a Poisson(λlb)
demand.

Let Q∗

ub be the optimal order quantity for the
Newsvendor problem under a Poisson(λub)
demand.

Since ∆G(Q) is non-decreasing in Q, according
to the available information, with confidence
probability α, the optimal order quantity Q∗ is a
member of the set {Q∗

lb, . . . ,Q
∗

ub}.
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Poisson demand

Candidate order quantities: example

Consider the set of 10 samples

{51,54,50,45,52,39,52,54,50,40},

and α = 0.9.

The candidate order quantities are
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Poisson demand

Confidence interval for the expected total cost

For a given order quantity Q we can prove that

GQ(λ) = h
∑Q

i=0 Pr{Poisson(λ) = i}(Q − i)+
p
∑

∞

i=Q Pr{Poisson(λ) = i}(i − Q),

is convex in λ.

Upper (cub) and lower (clb) bounds for the cost
associated with a solution that sets the order
quantity to a value in the set {Q∗

lb, . . . ,Q
∗

ub} can
be easily obtained by using convex optimization
approaches to find the λ∗ that maximizes or
minimizes this function over (λlb, λub).
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Poisson demand

Confidence interval for the expected total cost
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Poisson demand

Expected total cost: example

Consider the set of 10 samples

{51,54,50,45,52,39,52,54,50,40},

and α = 0.9.

The upper and lower bound for the expected total
cost are
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Q* = 55 G(Q*) = 9.1222

cost = (8.6,14.6)
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Poisson demand

Expected total cost: example

Assume we decide to order 53 items, according to
what a MLE approach suggests.

As we have seen, MLE estimates an expected
total cost of 9.0035 (note that the real cost we
would face is 9.3693).

If we compute clb = 8.9463 and cub = 11.0800,
then we know that with α = 0.9 confidence this
interval covers the real cost we are going to face
by ordering 53 units.

Similarly, the Bayesian approach only prescribes Q̂∗ = 54 and
estimates G(Q̂∗) = 9.4764 (real cost is 9.1530), while we know that
clb = 9.0334 and cub = 10.3374.
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Poisson demand

Lost sales

Consider the case in which unobserved lost sales occurred
and the M observed past demand data, d1, . . . ,dM , only reflect
the number of customers that purchased an item when the
inventory was positive .

The analysis discussed above can still be applied provided
that the confidence interval for the unknown parameter λ of the
Poisson(λ) demand is computed as

λlb = min{λ|Pr{Poisson(M̂λ) ≥ d̄} ≥ (1 − α)/2},
λub = max{λ|Pr{Poisson(M̂λ) ≤ d̄} ≥ (1 − α)/2}.

where M̂ =
∑M

j=1 Tj , and Tj ∈ (0,1) denotes the fraction of
time in day j — for which a demand sample dj is available —
during which the inventory was positive .
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Other distributions

Binomial demand

N customer enter the shop on a given day, the
unknown purchase probability of the Binomial
demand is q ∈ (0,1).

The analysis is similar to that developed for a
Poisson demand.

Also in this case we prove that GQ(q) is convex in
q.

Lost sales can be easily incorporated in the
analysis.
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Other distributions

Exponential demand

The interval of candidate order quantities can be
easily identified .

The analysis on the expected total cost is
complicated by the fact that GQ(λ) is not convex .

Extension to include lost sales is difficult .



Introduction Existing approaches Confidence-based optimization Conclusions

Other distributions

Exponential demand

A number of properties of GQ(λ) can be
exploited to find upper and lower bounds for the
expected total cost .
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Other distributions

Exponential demand

A number of properties of GQ(λ) can be
exploited to find upper and lower bounds for the
expected total cost .
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Discussion

Discussion

We presented a confidence-based optimization
strategy to the Newsboy problem with unknown
demand distribution parameter(s) .

We applied our approach to three maximum
entropy probability distributions of the
exponential family .

We showed the advantages of our approach
over two existing strategies in the literature.

For two demand distributions we extended the
analysis to include lost sales .
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Future works

Future works

Consider other probability distributions (e.g.
Normal, LogNormal etc.).

Further develop the analysis on lost sales for
the Exponential distribution.

Apply confidence-based optimization to other
stochastic optimization problems .
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Questions

Questions
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