Existing approaches

Confidence-based optimization

Conclusions

Confidence-based optimization for the Newsvendor problem

Roberto Rossi¹ Steven D Prestwich² S Armagan Tarim³ Brahim Hnich⁴

¹Wageningen University, The Netherlands
²University College Cork, Ireland
³Hacettepe University, Turkey
⁴Izmir University of Economics, Turkey

EURO 2012, Vilnius, Lithuania

Introduction
•000000000000

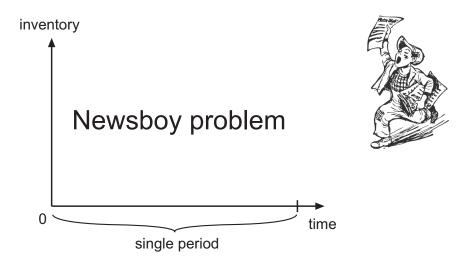
Existing approaches

Confidence-based optimization

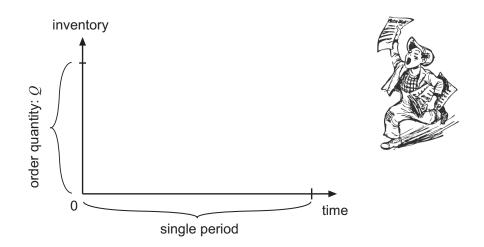
Conclusions

The Newsboy problem

The Newsboy problem



Introduction oooooooooooo	Existing approaches	Confidence-based optimization	Conclusions
The Newsboy problem			
Order quantity	1		



Introduction
000000000000000000000000000000000000000

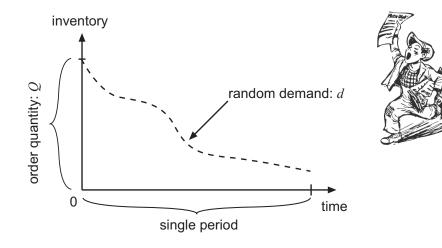
Existing approaches

Confidence-based optimization

Conclusions

The Newsboy problem

Demand structure



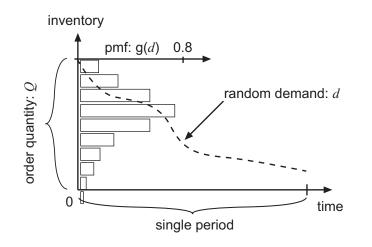
Existing approaches

Confidence-based optimization

Conclusions

The Newsboy problem

Demand structure



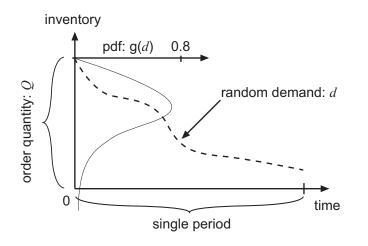
Existing approaches

Confidence-based optimization

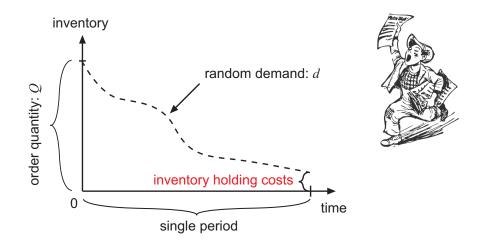
Conclusions

The Newsboy problem

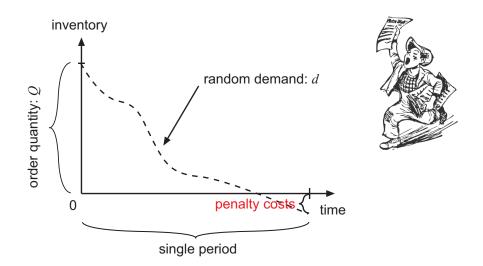
Demand structure



Cost structure



Cost structure



Conclusior

Existing approaches

Confidence-based optimization

Conclusions

The Newsboy problem

Mathematical formulation

Consider

- d: a one-period random demand that follows a probability distribution f(d)
- h: unit holding cost
- *p*: unit penalty cost

Let

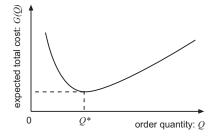
$$g(x) = hx^+ + px^-,$$

where $x^+ = \max(x, 0)$ and $x^- = -\min(x, 0)$.

The **expected total cost** is G(Q) = E[g(Q - d)], where $E[\cdot]$ denotes the expected value.

00000000000000000000000000000000000000	Existing approaches	Confidence-based optimization	Conclusions 000
Solution met	hod		

If *d* is continuous, G(Q) is **convex**.



The optimal order quantity is

$$\mathsf{Q}^* = \inf\{\mathsf{Q} \ge \mathsf{0} : \mathsf{Pr}\{d \le \mathsf{Q}\} = \frac{p}{p+h}\}.$$

Existing approaches

Confidence-based optimization

Conclusions

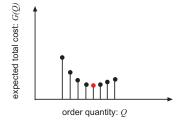
The Newsboy problem

Solution method

If d is discrete (e.g. Poisson),

$$\Delta G(\mathsf{Q}) = h - (h + p) \Pr\{d > j\}$$

is non-decreasing in Q.



 $\mathsf{Q}^* = \min\{\mathsf{Q} \in \mathbb{N}_0 : \Delta \textit{G}(\mathsf{Q}) \geq 0\}.$

Existing approaches

Confidence-based optimization

Conclusions

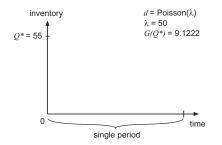
The Newsboy problem

Solution method: example

Demand follows a Poisson distribution $Poisson(\lambda)$, with demand rate $\lambda = 50$.

Holding cost h = 1, penalty cost p = 3.

The optimal order quantity Q^* is equal to 55 and provides a cost equal to 9.1222.



Existing approaches

Confidence-based optimization

Conclusions

Partial demand information

Unknown distribution parameter(s)

Assume now that the **demand distribution** is known, but one or more **distribution parameters** are unknown.

The decision maker has access to a set of *M* past realizations of the demand.

From these she has to estimate the **optimal order quantity** (or quantities) and the **associated cost**.

Existing approaches

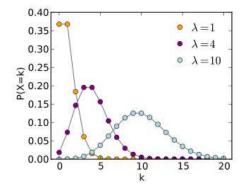
Confidence-based optimization

Conclusions

Partial demand information

Unknown distribution parameter(s)

Poisson demand, probability mass function:



 λ has to be **estimated** from past realizations.

Existing approaches

Confidence-based optimization

Conclusions

Point estimates of the parameter(s)

Point estimates of the parameter(s)

Point estimates of the unknown parameters may be obtained from the available samples by using:

- maximum likelihood estimators, or
- the method of moments.

Point estimates for the parameters are then used **in place** of the unknown demand distribution parameters to compute:

- the estimated **optimal order quantity** \widehat{Q}^* , and
- the associated estimated expected total cost G(Q^{*}).

Existing approaches

Confidence-based optimization

Conclusions

Point estimates of the parameter(s)

Point estimates: example

M observed **past demand data** d_1, \ldots, d_M .

Demand follows a **Poisson distribution** *Poisson*(λ), with demand rate λ .

We estimate λ using the **maximum likelihood** estimator (sample mean):

$$\widehat{\lambda} = \frac{1}{M} \sum_{i=1}^{M} \lambda_i.$$

The decision maker employs the distribution $Poisson(\hat{\lambda})$ in place of the actual unknown demand distribution.

Existing approaches

Confidence-based optimization

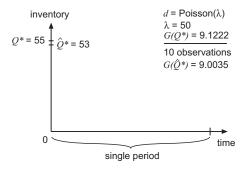
Conclusions

Point estimates of the parameter(s)

Point estimates: example

Holding cost: h = 1; penalty cost: p = 3; observed past demand data: {51, 54, 50, 45, 52, 39, 52, 54, 50, 40}.

$$\widehat{\lambda} =$$
 48.7, $\widehat{\mathsf{Q}}^* =$ 53 and $G(\widehat{\mathsf{Q}}^*) =$ 9.0035.



Existing approaches

Confidence-based optimization

Conclusions

Bayesian approach

Bayesian approach

The bayesian approach **infers** the distribution of parameter λ given some past observations *d* by applying **Bayes' theorem** as follows

$$p(\lambda|d) = \frac{p(d|\lambda)p(\lambda)}{\int p(d|\lambda)p(\lambda)d\lambda}$$

where

 $p(\lambda)$ is the **prior distribution** of λ , and

 $p(\lambda|d)$ is the **posterior distribution** of λ given the observed data *d*.

Existing approaches

Confidence-based optimization

Conclusions

Bayesian approach

Bayesian approach

The **prior distribution** describes **an estimate** of the likely values that the parameter λ might take, without taking the data into account. It is based on **subjective assessment** and/or **collateral data**.

A number of methods for constructing "**non-informative priors**" have been proposed (i.e. maximum entropy). These are meant to reflect the fact that the decision maker **ignores** of the prior distribution.

If prior and posterior distributions are in the same family, then they are called **conjugate distributions**.

Existing approaches

Confidence-based optimization

Conclusions

Bayesian approach

Bayesian approach [Hill, 1997]

Hill [EJOR, 1997] proposes a bayesian approach to the Newsvendor problem.

He considers a number of distributions (Binomial, Poisson and Exponential) and **derives posterior distributions for the demand** from a set of given data.

He adoptes **uninformative priors** to express an initial state of **complete ignorance** of the likely values that the parameter might take.

By using the posterior distribution he obtaines an **estimated optimal order quantity** and the respective **estimated expected total cost**.

Existing approaches

Confidence-based optimization

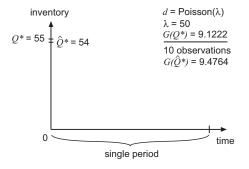
Conclusions

Bayesian approach

Bayesian approach: example

Holding cost: h = 1; penalty cost: p = 3; observed past demand data: {51, 54, 50, 45, 52, 39, 52, 54, 50, 40}.

 $\widehat{Q}^* = 54$ and $G(\widehat{Q}^*) = 9.4764$.



Existing approaches

Confidence-based optimization

Conclusions

Drawbacks of existing approaches

Drawbacks of existing approaches

Only provide point estimates of the order quantity and of the expected total cost.

Do not quantify the uncertainty associated with this estimate.

 How do we distinguish a case in which we only have 10 past observations vs a case with 1000 past observations?

The bayesian approach produces results that are "**biased**" by the selection of the prior; the posterior distribution **may not satisfy** Kolmogorov axioms.

J. Neyman. Outline of a theory of statistical estimation based on the classical theory of probability. Philosophical Transactions of the Royal Society of London, 236:333–380, 1937

Existing approaches

Confidence-based optimization

Conclusions

An alternative approach

An alternative approach

We propose a solution method based on **confidence interval analysis** [Neyman, 1937].

Observation

Since we operate under partial information, it may not be possible to uniquely determine "the" optimal order quantity and the associated exact cost.

We argue that a possible approach consists in **determining a range** of "candidate" optimal order quantities and **upper and lower** bounds for the **cost** associated with these quantities.

This range will contain the real optimum according to a **prescribed confidence probability** α .

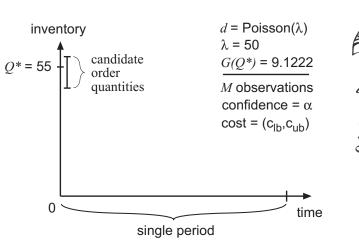
Existing approaches

Confidence-based optimization

Conclusions

An alternative approach

An alternative approach



Existing approaches

Confidence-based optimization

Conclusions

Poisson demand

Confidence interval for λ

Consider a set of *M* samples d_i drawn from a random demand *d* that is distributed according to a Poisson law with unknown parameter λ .

We construct a **confidence interval** for the unknown demand rate λ as follows

$$\lambda_{lb} = \min\{\lambda | \Pr\{Poisson(M\lambda) \ge \bar{d}\} \ge (1 - \alpha)/2\},\\ \lambda_{ub} = \max\{\lambda | \Pr\{Poisson(M\lambda) \le \bar{d}\} \ge (1 - \alpha)/2\},$$

where $\bar{d} = \sum_{i=0}^{M} d_i$.

A **closed form expression** for this interval has been proposed by Garwood [1936] based on the chi-square distribution.

Existing approaches

Confidence-based optimization

Conclusions

Poisson demand

Confidence interval for λ : example

Consider the set of 10 samples

 $\{51, 54, 50, 45, 52, 39, 52, 54, 50, 40\},$

and $\alpha = 0.9$.

The confidence interval for the unknown demand rate λ is

 $(\lambda_{lb}, \lambda_{ub}) = (45.1279, 52.4896),$

Note that, by chance, this interval covers the actual demand rate $\lambda = 50$ used to generate the samples.

Existing approaches

Confidence-based optimization

Conclusions

Poisson demand

Candidate order quantities

Let Q_{lb}^* be the **optimal order quantity** for the Newsvendor problem under a $Poisson(\lambda_{lb})$ demand.

Let Q_{ub}^* be the **optimal order quantity** for the Newsvendor problem under a *Poisson*(λ_{ub}) demand.

Since $\Delta G(Q)$ is **non-decreasing** in *Q*, according to the available information, **with confidence probability** α , the optimal order quantity Q^* is a **member** of the set $\{Q_{lb}^*, \ldots, Q_{ub}^*\}$.

Existing approaches

Confidence-based optimization

Conclusions

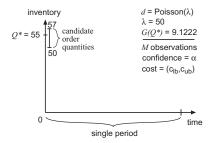
Poisson demand

Candidate order quantities: example

Consider the set of 10 samples

 $\{ {\bf 51}, {\bf 54}, {\bf 50}, {\bf 45}, {\bf 52}, {\bf 39}, {\bf 52}, {\bf 54}, {\bf 50}, {\bf 40} \},$ and $\alpha = {\bf 0.9}.$

The candidate order quantities are



Existing approaches

Confidence-based optimization

Conclusions

Poisson demand

Confidence interval for the expected total cost

For a given order quantity Q we can prove that

$$\begin{aligned} G_{Q}(\lambda) &= h \sum_{i=0}^{Q} \Pr\{Poisson(\lambda) = i\}(Q-i) + \\ p \sum_{i=0}^{\infty} \Pr\{Poisson(\lambda) = i\}(i-Q), \end{aligned}$$

is **convex** in λ .

Upper (c_{ub}) and **lower** (c_{lb}) **bounds** for the cost associated with a solution that sets the order quantity to **a value in the set** $\{Q_{lb}^*, \ldots, Q_{ub}^*\}$ can be easily obtained by using **convex optimization** approaches to find the λ^* that maximizes or minimizes this function over $(\lambda_{lb}, \lambda_{ub})$.

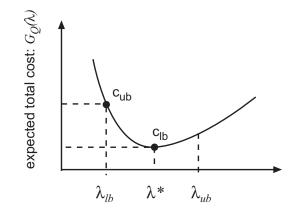
Existing approaches

Confidence-based optimization

Conclusions

Poisson demand

Confidence interval for the expected total cost



for $\mathsf{Q} \in \{\mathsf{Q}_{\textit{lb}}^*, \ldots, \mathsf{Q}_{\textit{ub}}^*\}.$

Existing approaches

Confidence-based optimization

Conclusions

Poisson demand

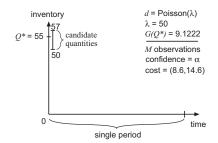
Expected total cost: example

Consider the set of 10 samples

 $\{51, 54, 50, 45, 52, 39, 52, 54, 50, 40\},\$

and $\alpha = 0.9$.

The upper and lower bound for the expected total cost are



Existing approaches

Confidence-based optimization

Conclusions

Poisson demand

Expected total cost: example

Assume we decide to order 53 items, according to what a **MLE approach** suggests.

As we have seen, **MLE estimates** an expected total cost of 9.0035 (note that the real cost we would face is 9.3693).

If we compute $c_{lb} = 8.9463$ and $c_{ub} = 11.0800$, then we know that with $\alpha = 0.9$ confidence this interval **covers the real cost** we are going to face by ordering 53 units.

Similarly, the Bayesian approach **only prescribes** $\widehat{Q}^* = 54$ and estimates $G(\widehat{Q}^*) = 9.4764$ (real cost is 9.1530), while we know that $c_{lb} = 9.0334$ and $c_{ub} = 10.3374$.

Consider the case in which **unobserved lost sales** occurred and the *M* observed past demand data, d_1, \ldots, d_M , **only reflect** the number of customers that purchased an item **when the inventory was positive**.

The analysis discussed above **can still be applied** provided that the confidence interval for the unknown parameter λ of the *Poisson*(λ) demand is computed as

$$\lambda_{lb} = \min\{\lambda | \Pr\{Poisson(\widehat{M}\lambda) \ge \overline{d}\} \ge (1-\alpha)/2\},\\ \lambda_{ub} = \max\{\lambda | \Pr\{Poisson(\widehat{M}\lambda) \le \overline{d}\} \ge (1-\alpha)/2\}.$$

where $\widehat{M} = \sum_{j=1}^{M} T_j$, and $T_j \in (0, 1)$ denotes the fraction of time in day j — for which a demand sample d_j is available — during which the inventory was positive.

Existing approaches

Confidence-based optimization

Conclusions

Other distributions

Binomial demand

N customer enter the shop on a given day, the **unknown purchase probability** of the Binomial demand is $q \in (0, 1)$.

The analysis is **similar** to that developed for a Poisson demand.

Also in this case we prove that $G_Q(q)$ is **convex** in q.

Lost sales can be **easily incorporated** in the analysis.

Existing approaches

Confidence-based optimization

Conclusions

Other distributions

Exponential demand

The interval of candidate order quantities can be easily identified.

The analysis on the expected total cost is **complicated** by the fact that $G_Q(\lambda)$ is **not convex**.

Extension to include lost sales is difficult.

Existing approaches

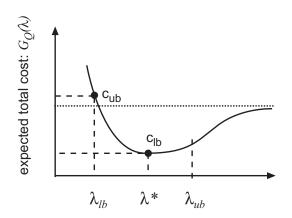
Confidence-based optimization

Conclusions

Other distributions

Exponential demand

A number of properties of $G_Q(\lambda)$ can be exploited to find upper and lower bounds for the expected total cost.



Existing approaches

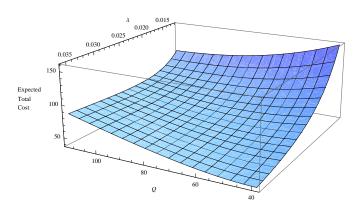
Confidence-based optimization

Conclusions

Other distributions

Exponential demand

A number of properties of $G_Q(\lambda)$ can be exploited to find upper and lower bounds for the expected total cost.



Existing approaches

Confidence-based optimization

Conclusions

Discussion

Discussion

We presented a **confidence-based optimization** strategy to the Newsboy problem with **unknown demand distribution parameter(s)**.

We applied our approach to three **maximum entropy** probability distributions of the **exponential family**.

We showed the **advantages of our approach** over two existing strategies in the literature.

For two demand distributions we extended the analysis to include **lost sales**.

Existing approaches

Confidence-based optimization

Conclusions

Future works

Future works

Consider **other probability distributions** (e.g. Normal, LogNormal etc.).

Further **develop the analysis on lost sales** for the Exponential distribution.

Apply confidence-based optimization to **other stochastic optimization problems**.

Existing approaches

Confidence-based optimization

Conclusions ○○●

Questions

Questions

