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Demand structure
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Cost structure
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Cost structure
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Mathematical formulation
Consider

◮ d: a one-period random demand that follows
a probability distribution f (d)

◮ h: unit holding cost

◮ p: unit penalty cost

Let
g(x) = hx+ + px−,

where x+ = max(x, 0) and x− = −min(x, 0).

The expected total cost is G(Q) = E[g(Q − d)],
where E[·] denotes the expected value.
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Solution method
If d is continuous, G(Q) is convex.
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Solution method
If d is discrete (e.g. Poisson),

∆G(Q) = G(Q + 1)− G(Q) = h − (h + p)Pr{d > j}

is non-decreasing in Q.
e
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Q∗ = min{Q ∈ N0 : ∆G(Q) ≥ 0}.
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Solution method: example
Demand follows a Poisson distribution Poisson(λ),
with demand rate λ = 50.

Holding cost h = 1, penalty cost p = 3.

The optimal order quantity Q∗ is equal to 55 and
provides a cost equal to 9.1222.
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Assumptions on demand distribution
What happens if we consider different
assumptions on demand distribution?

Khouja (2000), among other extensions, surveyed
those dealing with different states of information
about demand.

Demand
Moments Known X X

Unknown X X
Distribution Known X X

Unknown X X
Observations X X
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Assumptions on demand distribution
Known moments & unknown distribution

All works below assume that demand distribution
is not known, i.e. distribution free setting.

Authors Methodology

Scarf et al. (1958) “maximin approach,” i.e. maximise the
worst-case profit

Gallego & Moon (1993) four extensions to Scarf et al. (1958)
Moon & Choi (1995) extends Scarf et al. (1958)

to account for balking: customers balk when
inventory level is low

Perakis & Roels (2008) “minimax regret,” i.e. minimises its
maximum cost discrepancy
from the optimal decision.

see Notzon (1970); Gallego et al. (2001); Bertsimas & Thiele (2006);
Bienstock & Özbay (2008); Ahmed et al. (2007); See & Sim (2010) for
multi-period inventory models.
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Assumptions on demand distribution
Unknown moments & unknown distribution

All works below operate without any access to and
assumptions on the true demand distributions, i.e.
non-parametric setting.

Authors Methodology

Hayes, 1971 order statistics
Lordahl & Bookbinder, 1994 order statistics
Bookbinder & Lordahl, 1989 bootstrapping
Fricker & Goodhart, 2000 bootstrapping
Levi et al. (2007) determine bounds for the number

of samples needed to guarantee
an arbitrary approximation of
the optimal policy

Huh et al. (2009) adaptive inventory policy that
deal with censored observations
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Assumptions on demand distribution
Unknown moments & known distribution

According to Berk et al. (2007) there are two
general approaches for dealing with this setting:
the Bayesian and the frequentist.

According to Kevork (2010) another distinction can
be made between approaches assuming that
demand is fully observed and approaches
assuming that demand may be censored.
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Assumptions on demand distribution
Unknown moments & known distribution

Bayesian approaches in the literature:

Fully observed demand Censored demand

Scarf (1959, 1960) Lariviere & Porteus (1999)
Iglehart (1964) Ding & Puterman (1998)
Azoury (1985) Berk et al. (2007)
Lovejoy (1990) Chen (2010)
Bradford & Sugrue (1990) Lu et al. (2008)
Hill (1997) Mersereau (2012)
Eppen & Iyer (1997)
Hill (1999)
Lee (2008)
Bensoussan et al. (2009)
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Assumptions on demand distribution
Unknown moments & known distribution

Frequentist approaches in the literature:

Authors Methodology

Nahmias (1994) stock level is given
Agrawal & Smith (1996) stock level is given
Liyanage & Shanthikumar (2005) “operational statistics:” optimal order quantity

directly estimated from the data
Kevork (2010) exploits the sampling distribution of the demand

parameters to study the variability of the estimates
for the optimal order quantity and associated
expected total profit.

Akcay et al. (2011) ETOC: expected one-period cost associated
with operating under an estimated inventory
policy

Klabjan et al. (2013) integrate distribution fitting and
robust optimisation
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Assumptions on demand distribution
Unknown moments & known distribution

Assume now that the demand distribution is
known, but one or more distribution parameters

are unknown.

The decision maker has access to a set of M past

realizations of the demand.

From these she has to estimate the optimal order

quantity (or quantities) and the associated cost.
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Assumptions on demand distribution
Unknown moments & known distribution

Poisson demand, probability mass function:

λ has to be estimated from past realizations.
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A frequentist approach
Point estimates of the parameter(s)

Point estimates of the unknown parameters may
be obtained from the available samples by using:

◮ maximum likelihood estimators, or
◮ the method of moments.

Point estimates for the parameters are then used
in place of the unknown demand distribution
parameters to compute:

◮ the estimated optimal order quantity Q̂∗, and
◮ the associated estimated expected total cost

G(Q̂∗).
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A frequentist approach
Point estimates: example

M observed past demand data d1, . . . , dM .

Demand follows a Poisson distribution

Poisson(λ), with demand rate λ.

We estimate λ using the maximum likelihood

estimator (sample mean):

λ̂ =
1

M

M∑

i=1

λi.

The decision maker employs the distribution
Poisson(λ̂) in place of the actual unknown demand
distribution.
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A frequentist approach
Point estimates: example

Holding cost: h = 1; penalty cost: p = 3;
observed past demand data:
{51, 54, 50, 45, 52, 39, 52, 54, 50, 40}.

λ̂ = 48.7, Q̂∗ = 53 and G(Q̂∗) = 9.0035.

time

inventory

0

single period

d = Poisson(λ)

λ = 50

Q* = 55
G(Q*) = 9.1222

Q* = 53

G(Q*) = 9.0035

10 observations
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Bayesian approach
The bayesian approach infers the distribution of
parameter λ given some past observations d by
applying Bayes’ theorem as follows

p(λ|d) =
p(d|λ)p(λ)∫
p(d|λ)p(λ)dλ

where

p(λ) is the prior distribution of λ, and

p(λ|d) is the posterior distribution of λ given the
observed data d.
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Bayesian approach
The prior distribution describes an estimate of
the likely values that the parameter λ might take,
without taking the data into account. It is based on
subjective assessment and/or collateral data.

A number of methods for constructing
“non-informative priors” have been proposed
(i.e. maximum entropy). These are meant to
reflect the fact that the decision maker ignores of
the prior distribution.

If prior and posterior distributions are in the same
family, then they are called conjugate

distributions.
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Bayesian approach
[Hill, 1997]

Hill [EJOR, 1997] proposes a bayesian approach

to the Newsvendor problem.

He considers a number of distributions (Binomial,
Poisson and Exponential) and derives posterior

distributions for the demand from a set of given
data.

He adopts uninformative priors to express an
initial state of complete ignorance of the likely
values that the parameter might take.

By using the posterior distribution he obtains an
estimated optimal order quantity and the
respective estimated expected total cost.

30/58



Bayesian approach
[Hill, 1997] example

Holding cost: h = 1; penalty cost: p = 3;
observed past demand data:
{51, 54, 50, 45, 52, 39, 52, 54, 50, 40}.

Q̂∗ = 54 and G(Q̂∗) = 9.4764.

time

inventory

0

single period

d = Poisson(λ)

λ = 50

Q* = 55 G(Q*) = 9.1222
Q* = 54

G(Q*) = 9.4764

10 observations
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Drawbacks of existing approaches
Only provide point estimates of the order
quantity and of the expected total cost.

Do not quantify the uncertainty associated with
this estimate.

◮ How do we distinguish a case in which we
only have 10 past observations vs a case with
1000 past observations?

The bayesian approach produces results that, for
small samples, are “biased” by the selection of the
prior; further drawbacks are outlined in

J. Neyman. Outline of a theory of statistical estimation based on the classical theory of
probability. Philosophical Transactions of the Royal Society of London, 236:333—380, 1937
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An alternative approach
We propose a solution method based on
confidence interval analysis [Neyman, 1937].

Observation
Since we operate under partial information, it may
not be possible to uniquely determine “the” optimal
order quantity and the associated exact cost.

We argue that a possible approach consists in
determining a range of “candidate” optimal order
quantities and upper and lower bounds for the
cost associated with these quantities.

This range will contain the real optimum according
to a prescribed confidence probability α.
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An alternative approach
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Confidence interval for λ
Consider a set of M random variates di drawn from
a random demand d that is distributed according to
a Poisson law with unknown parameter λ.

We construct a confidence interval for the
unknown demand rate λ as follows

λlb = min{λ|Pr{Poisson(Mλ) ≥ d̄} ≥ (1 − α)/2},
λub = max{λ|Pr{Poisson(Mλ) ≤ d̄} ≥ (1 − α)/2},

where d̄ =
∑M

i=0
di.

A closed form expression for this interval has
been proposed by Garwood [1936] based on the
chi-square distribution.
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Confidence interval for λ: example
Consider the set of 10 random variates

{51, 54, 50, 45, 52, 39, 52, 54, 50, 40},

and α = 0.9.

The confidence interval for the unknown demand
rate λ is

(λlb, λub) = (45.1279, 52.4896),

Note that, by chance, this interval covers the actual
demand rate λ = 50 used to generate the sample.
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Candidate order quantities
Let Q∗

lb be the optimal order quantity for the
Newsvendor problem under a Poisson(λlb) demand.

Let Q∗

ub be the optimal order quantity for the
Newsvendor problem under a Poisson(λub)
demand.

Since ∆G(Q) is non-decreasing in Q, according
to the available information, with confidence

probability α, the optimal order quantity Q∗ is a
member of the set {Q∗

lb, . . . ,Q∗

ub}.
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Candidate order quantities
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Candidate order quantities: example
Consider the set of 10 random variates

{51, 54, 50, 45, 52, 39, 52, 54, 50, 40},

and α = 0.9.

The candidate order quantities are
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Confidence interval for the expected total cost
For a given order quantity Q we can prove that

GQ(λ) = h
∑Q

i=0
Pr{Poisson(λ) = i}(Q − i)+

p
∑

∞

i=Q Pr{Poisson(λ) = i}(i − Q),

is convex in λ.

Upper (cub) and lower (clb) bounds for the cost
associated with a solution that sets the order
quantity to a value in the set {Q∗

lb, . . . ,Q∗

ub} can be
easily obtained by using convex optimization

approaches to find the λ∗ that maximizes or
minimizes this function over (λlb, λub).
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Confidence interval for the expected total cost
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Confidence interval for the expected total cost
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Confidence interval for the expected total cost
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Confidence interval for the expected total cost
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Confidence interval for the expected total cost
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Expected total cost: example
Consider the set of 10 random variates

{51, 54, 50, 45, 52, 39, 52, 54, 50, 40},

and α = 0.9.

The upper and lower bound for the expected total
cost are
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Expected total cost: example
Assume we decide to order 53 items, according to
what a MLE approach suggests.

As we have seen, MLE estimates an expected
total cost of 9.0035 (note that the real cost we
would face is 9.3693).

If we compute clb = 8.9463 and cub = 11.0800, then
we know that with α = 0.9 confidence this interval
covers the real cost we are going to face by
ordering 53 units.

Similarly, the Bayesian approach only prescribes Q̂∗ = 54 and
estimates G(Q̂∗) = 9.4764 (real cost is 9.1530), while we know that
clb = 9.0334 and cub = 10.3374.
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Lost sales
Consider the case in which unobserved lost sales occurred
and the M observed past demand data, d1, . . . , dM , only reflect

the number of customers that purchased an item when the

inventory was positive.

The analysis discussed above can still be applied provided
that the confidence interval for the unknown parameter λ of the
Poisson(λ) demand is computed as

λlb = min{λ|Pr{Poisson(M̂λ) ≥ d̄} ≥ (1 − α)/2},

λub = max{λ|Pr{Poisson(M̂λ) ≤ d̄} ≥ (1 − α)/2}.

where M̂ =
∑M

j=1
Tj, and Tj ∈ (0, 1) denotes the fraction of

time in day j — for which a demand sample dj is available —
during which the inventory was positive.
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Binomial demand
N customer enter the shop on a given day, the
unknown purchase probability of the Binomial
demand is q ∈ (0, 1).

The analysis is similar to that developed for a
Poisson demand.

Also in this case we prove that GQ(q) is convex in
q.

Lost sales can be easily incorporated in the
analysis.
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Exponential demand
The interval of candidate order quantities can be
easily identified.

The analysis on the expected total cost is
complicated by the fact that GQ(λ) is not convex.

Extension to include lost sales is difficult.
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Exponential demand
A number of properties of GQ(λ) can be
exploited to find upper and lower bounds for the

expected total cost.

0
λ

hQ

G
p

Q(λ)Gh
Q(λ)GQ(λ)

51/58



Exponential demand
A number of properties of GQ(λ) can be
exploited to find upper and lower bounds for the

expected total cost.
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Experiment setup

Parameter Values
h 1

p 2, 4, 8, 16

M 5, 10, 20, 40, 80

α 0.9

N 1, 2, 4, 8, 16, 32, 64

p 0.5, 0.75, 0.95

λ 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64
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Comparison with MLE and Bayesian approaches
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Confidence-based optimisation results
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Discussion
We presented a confidence-based optimization

strategy to the Newsboy problem with unknown

demand distribution parameter(s).

We applied our approach to three maximum

entropy probability distributions of the
exponential family.

We showed the advantages of our approach

over two existing strategies in the literature.

For two demand distributions we extended the
analysis to include lost sales.
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Future works
Consider other probability distributions (e.g.
Normal, LogNormal, Multinomial etc.).

Further develop the analysis on lost sales for
the Exponential distribution.

Extend the methodology to a non-parametric

setting.

Apply confidence-based optimization to other

stochastic optimization problems.
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Questions
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