Confidence-based optimization for the Newsvendor problem

Roberto Rossi¹ Steven D Prestwich² S Armagan Tarim³ Brahim Hnich⁴

¹University of Edinburgh, United Kingdom
²University College Cork, Ireland
³Hacettepe University, Turkey
⁴Izmir University of Economics, Turkey

Jun 2014, Università degli Studi di Bologna, Italy http://dx.doi.org/10.1016/j.ejor.2014.06.007

university of edinburgh Business School

The Newsboy problem

Order quantity

Demand structure

Demand structure

Demand structure

Cost structure

Cost structure

Mathematical formulation

Consider

- ► d: a one-period random demand that follows a probability distribution f(d)
- h: unit holding cost
- p: unit penalty cost

Let

$$g(x) = hx^+ + px^-,$$

where $x^+ = \max(x, 0)$ and $x^- = -\min(x, 0)$.

The **expected total cost** is G(Q) = E[g(Q - d)], where $E[\cdot]$ denotes the expected value.

Solution method

If *d* is continuous, G(Q) is **convex**.

The optimal order quantity is

$$Q^* = \inf\{Q \ge 0 : \Pr\{d \le Q\} = \frac{p}{p+h}\}.$$

Solution method

If d is discrete (e.g. Poisson),

$$\Delta G(Q) = G(Q+1) - G(Q) = h - (h+p) \Pr\{d > j\}$$

is **non-decreasing** in Q.

 $Q^* = \min\{Q \in \mathbb{N}_0 : \Delta G(Q) \ge 0\}.$

Solution method: example

Demand follows a Poisson distribution $Poisson(\lambda)$, with demand rate $\lambda = 50$.

Holding cost h = 1, penalty cost p = 3.

The optimal order quantity Q^* is equal to 55 and provides a cost equal to 9.1222.

What happens if we consider different assumptions on demand distribution?

Khouja (2000), among other extensions, surveyed those dealing with different states of information about demand.

Demand

Moments	Known	Х	Х		
	Unknown			Х	Х
Distribution	Known	Х			Х
	Unknown		Х	Х	
Observations				Х	Х

Known moments & distribution

What happens if we consider different assumptions on demand distribution?

Khouja (2000), among other extensions, surveyed those dealing with different states of information about demand.

Demand

Moments	Known	Х	Х		
	Unknown			Х	Х
Distribution	Known	Х			Х
	Unknown		Х	Х	
Observations				Х	Х
		\uparrow			

Known moments & unknown distribution

What happens if we consider different assumptions on demand distribution?

Khouja (2000), among other extensions, surveyed those dealing with different states of information about demand.

Demand

Moments	Known	Х	Х		
	Unknown			Х	Х
Distribution	Known	Х			Х
	Unknown		Х	Х	
Observations				Х	Х
			\uparrow		

Known moments & unknown distribution

All works below assume that demand distribution is not known, i.e. *distribution free* setting.

Authors	Methodology	Ta
Scarf et al. (1958)	"maximin approach," i.e. maximise the worst-case profit	- X
Gallego & Moon (1993)	four extensions to Scarf et al. (1958)	4
Moon & Choi (1995)	extends Scarf et al. (1958)	
	to account for balking: customers balk when	- NG
	inventory level is low	1
Perakis & Roels (2008)	"minimax regret," i.e. minimises its	
	maximum cost discrepancy	
	from the optimal decision.	

see Notzon (1970); Gallego et al. (2001); Bertsimas & Thiele (2006); Bienstock & Özbay (2008); Ahmed et al. (2007); See & Sim (2010) for multi-period inventory models.

Unknown moments & unknown distribution

What happens if we consider different assumptions on demand distribution?

Khouja (2000), among other extensions, surveyed those dealing with different states of information about demand.

Demand

Moments	Known	Х	Х		
	Unknown			Х	Х
Distribution	Known	Х			Х
	Unknown		Х	Х	
Observations				Х	Х
				\uparrow	

Unknown moments & unknown distribution

All works below operate without any access to and assumptions on the true demand distributions, i.e. *non-parametric* setting.

Authors	Methodology
Hayes, 1971	order statistics
Lordahl & Bookbinder, 1994	order statistics
Bookbinder & Lordahl, 1989	bootstrapping
Fricker & Goodhart, 2000	bootstrapping
Levi et al. (2007)	determine bounds for the number of samples needed to guarantee an arbitrary approximation of the optimal policy
Huh et al. (2009)	adaptive inventory policy that deal with censored observations

Unknown moments & known distribution

What happens if we consider different assumptions on demand distribution?

Khouja (2000), among other extensions, surveyed those dealing with different states of information about demand.

Demand

Moments	Known	Х	Х		
	Unknown			Х	Х
Distribution	Known	Х			Х
	Unknown		Х	Х	
Observations				Х	Х
					\uparrow

Unknown moments & known distribution

According to Berk et al. (2007) there are two general approaches for dealing with this setting: the **Bayesian** and the **frequentist**.

According to Kevork (2010) another distinction can be made between approaches assuming that demand is **fully observed** and approaches assuming that demand may be **censored**.

Unknown moments & known distribution

Bayesian approaches in the literature:

Fully observed demand	Censored demand
Scarf (1959, 1960)	Lariviere & Porteus (1999)
lglehart (1964)	Ding & Puterman (1998)
Azoury (1985)	Berk et al. (2007)
Lovejoy (1990)	Chen (2010)
Bradford & Sugrue (1990)	Lu et al. (2008)
Hill (1997)	Mersereau (2012)
Eppen & lyer (1997)	
Hill (1999)	
Lee (2008)	
Bensoussan et al. (2009)	

Unknown moments & known distribution

Frequentist approaches in the literature:

Authors Methodology	
Nahmias (1994) stock level is give	en
Agrawal & Smith (1996) stock level is give	en
Liyanage & Shanthikumar (2005) "operational stati-	stics:" optimal order quantity
Kevork (2010) exploits the same parameters to stu	bling distribution of the demand udy the variability of the estimates
for the optimal or expected total pr	der quantity and associated ofit.
Akcay et al. (2011) ETOC: expected	one-period cost associated
policy	ider an estimated inventory
Klabjan et al. (2013) integrate distribur robust optimisation	tion fitting and on

Unknown moments & known distribution

Assume now that the **demand distribution** is known, but one or more **distribution parameters** are unknown.

The decision maker has access to a set of *M* past realizations of the demand.

From these she has to estimate the **optimal order quantity** (or quantities) and the **associated cost**.

Unknown moments & known distribution

Poisson demand, probability mass function:

 $\boldsymbol{\lambda}$ has to be **estimated** from past realizations.

A frequentist approach

Point estimates of the parameter(s)

Point estimates of the unknown parameters may be obtained from the available samples by using:

- maximum likelihood estimators, or
- the method of moments.

Point estimates for the parameters are then used **in place** of the unknown demand distribution parameters to compute:

- the estimated optimal order quantity \widehat{Q}^* , and
- ► the associated estimated expected total cost G(Q^{*}).

A frequentist approach

Point estimates: example

M observed **past demand data** d_1, \ldots, d_M .

Demand follows a **Poisson distribution** $Poisson(\lambda)$, with demand rate λ .

We estimate λ using the **maximum likelihood** estimator (sample mean):

$$\widehat{\lambda} = \frac{1}{M} \sum_{i=1}^{M} \lambda_i.$$

The decision maker employs the distribution $Poisson(\hat{\lambda})$ in place of the actual unknown demand distribution.

A frequentist approach

Point estimates: example

Holding cost: h = 1; penalty cost: p = 3; observed past demand data: {51, 54, 50, 45, 52, 39, 52, 54, 50, 40}.

$$\widehat{\lambda} = 48.7, \ \widehat{Q}^* = 53 \text{ and } G(\widehat{Q}^*) = 9.0035.$$

The bayesian approach **infers** the distribution of parameter λ given some past observations *d* by applying **Bayes' theorem** as follows

$$p(\lambda|d) = \frac{p(d|\lambda)p(\lambda)}{\int p(d|\lambda)p(\lambda)d\lambda}$$

where

 $p(\lambda)$ is the **prior distribution** of λ , and

 $p(\lambda|d)$ is the **posterior distribution** of λ given the observed data *d*.

The **prior distribution** describes **an estimate** of the likely values that the parameter λ might take, without taking the data into account. It is based on **subjective assessment** and/or **collateral data**.

A number of methods for constructing "**non-informative priors**" have been proposed (i.e. maximum entropy). These are meant to reflect the fact that the decision maker **ignores** of the prior distribution.

If prior and posterior distributions are in the same family, then they are called **conjugate distributions**.

Hill [EJOR, 1997] proposes a bayesian approach to the Newsvendor problem.

He considers a number of distributions (Binomial, Poisson and Exponential) and **derives posterior distributions for the demand** from a set of given data.

He adopts **uninformative priors** to express an initial state of **complete ignorance** of the likely values that the parameter might take.

By using the posterior distribution he obtains an **estimated optimal order quantity** and the respective **estimated expected total cost**.

[Hill, 1997] example

Holding cost: h = 1; penalty cost: p = 3; observed past demand data: {51, 54, 50, 45, 52, 39, 52, 54, 50, 40}.

 $\widehat{Q}^* = 54$ and $G(\widehat{Q}^*) = 9.4764$.

Drawbacks of existing approaches

Only provide point estimates of the order quantity and of the expected total cost.

Do not quantify the uncertainty associated with this estimate.

How do we distinguish a case in which we only have 10 past observations vs a case with 1000 past observations?

The bayesian approach produces results that, for small samples, are "**biased**" by the selection of the prior; further drawbacks are outlined in

J. Neyman. Outline of a theory of statistical estimation based on the classical theory of probability. Philosophical Transactions of the Royal Society of London, 236:333–380, 1937

An alternative approach

We propose a solution method based on **confidence interval analysis** [Neyman, 1937].

Observation

Since we operate under partial information, it may not be possible to uniquely determine "the" optimal order quantity and the associated exact cost.

We argue that a possible approach consists in **determining a range** of "candidate" optimal order quantities and **upper and lower** bounds for the **cost** associated with these quantities.

This range will contain the real optimum according to a **prescribed confidence probability** α .

An alternative approach

Confidence interval for λ

Consider a set of *M* random variates d_i drawn from a random demand *d* that is distributed according to a Poisson law with unknown parameter λ .

We construct a **confidence interval** for the unknown demand rate λ as follows

$$\lambda_{lb} = \min\{\lambda | \Pr\{Poisson(M\lambda) \ge \bar{d}\} \ge (1-\alpha)/2\},\\ \lambda_{ub} = \max\{\lambda | \Pr\{Poisson(M\lambda) \le \bar{d}\} \ge (1-\alpha)/2\}$$

where $\bar{d} = \sum_{i=0}^{M} d_i$.

A **closed form expression** for this interval has been proposed by Garwood [1936] based on the chi-square distribution.

Confidence interval for λ : example

Consider the set of 10 random variates

$${51, 54, 50, 45, 52, 39, 52, 54, 50, 40},$$

and $\alpha = 0.9$.

The confidence interval for the unknown demand rate λ is

$$(\lambda_{lb}, \lambda_{ub}) = (45.1279, 52.4896),$$

Note that, by chance, this interval covers the actual demand rate $\lambda = 50$ used to generate the sample.

Candidate order quantities

Let Q_{lb}^* be the **optimal order quantity** for the Newsvendor problem under a $Poisson(\lambda_{lb})$ demand.

Let Q_{ub}^* be the **optimal order quantity** for the Newsvendor problem under a $Poisson(\lambda_{ub})$ demand.

Since $\Delta G(Q)$ is **non-decreasing** in Q, according to the available information, **with confidence probability** α , the optimal order quantity Q^* is a **member** of the set $\{Q_{lb}^*, \ldots, Q_{ub}^*\}$.

Candidate order quantities

Candidate order quantities: example

Consider the set of 10 random variates

 $\{51, 54, 50, 45, 52, 39, 52, 54, 50, 40\},$

and $\alpha = 0.9$.

The candidate order quantities are

For a given order quantity Q we can prove that

$$G_{Q}(\lambda) = h \sum_{i=0}^{Q} \Pr\{Poisson(\lambda) = i\}(Q-i) + p \sum_{i=0}^{\infty} \Pr\{Poisson(\lambda) = i\}(i-Q),$$

is **convex** in λ .

Upper (c_{ub}) and **lower** (c_{lb}) **bounds** for the cost associated with a solution that sets the order quantity to **a value in the set** $\{Q_{lb}^*, \ldots, Q_{ub}^*\}$ can be easily obtained by using **convex optimization** approaches to find the λ^* that maximizes or minimizes this function over $(\lambda_{lb}, \lambda_{ub})$.

for $Q \in \{Q_{lb}^*, \ldots, Q_{ub}^*\}$.

Expected total cost: example

Consider the set of 10 random variates

 $\{51, 54, 50, 45, 52, 39, 52, 54, 50, 40\},$

and $\alpha = 0.9$.

The upper and lower bound for the expected total cost are

Expected total cost: example

Assume we decide to order 53 items, according to what a **MLE approach** suggests.

As we have seen, **MLE estimates** an expected total cost of 9.0035 (note that the real cost we would face is 9.3693).

If we compute $c_{lb} = 8.9463$ and $c_{ub} = 11.0800$, then we know that with $\alpha = 0.9$ confidence this interval **covers the real cost** we are going to face by ordering 53 units.

Similarly, the Bayesian approach **only prescribes** $\hat{Q}^* = 54$ and estimates $G(\hat{Q}^*) = 9.4764$ (real cost is 9.1530), while we know that $c_{lb} = 9.0334$ and $c_{ub} = 10.3374$.

Lost sales

Consider the case in which **unobserved lost sales** occurred and the *M* observed past demand data, d_1, \ldots, d_M , **only reflect** the number of customers that purchased an item **when the inventory was positive**.

The analysis discussed above **can still be applied** provided that the confidence interval for the unknown parameter λ of the $Poisson(\lambda)$ demand is computed as

$$\lambda_{lb} = \min\{\lambda | \Pr\{Poisson(\widehat{M}\lambda) \ge \overline{d}\} \ge (1-\alpha)/2\},\\ \lambda_{ub} = \max\{\lambda | \Pr\{Poisson(\widehat{M}\lambda) \le \overline{d}\} \ge (1-\alpha)/2\}.$$

where $\widehat{M} = \sum_{j=1}^{M} T_j$, and $T_j \in (0, 1)$ denotes the fraction of time in day j — for which a demand sample d_j is available — during which the inventory was positive.

Binomial demand

N customer enter the shop on a given day, the **unknown purchase probability** of the Binomial demand is $q \in (0, 1)$.

The analysis is **similar** to that developed for a Poisson demand.

Also in this case we prove that $G_Q(q)$ is **convex** in q.

Lost sales can be **easily incorporated** in the analysis.

Exponential demand

The interval of candidate order quantities can be **easily identified**.

The analysis on the expected total cost is **complicated** by the fact that $G_Q(\lambda)$ is **not convex**.

Extension to include lost sales is difficult.

Exponential demand

A number of properties of $G_Q(\lambda)$ can be exploited to find upper and lower bounds for the expected total cost.

Exponential demand

A number of properties of $G_Q(\lambda)$ can be exploited to find upper and lower bounds for the expected total cost.

Experiment setup

Parameter	Values
h	1
р	2, 4, 8, 16
M	5, 10, 20, 40, 80
α	0.9
N	1, 2, 4, 8, 16, 32, 64
р	0.5, 0.75, 0.95
λ	0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64

Comparison with MLE and Bayesian approaches

Confidence-based optimisation results

Discussion

We presented a **confidence-based optimization** strategy to the Newsboy problem with **unknown demand distribution parameter(s)**.

We applied our approach to three **maximum entropy** probability distributions of the **exponential family**.

We showed the **advantages of our approach** over two existing strategies in the literature.

For two demand distributions we extended the analysis to include **lost sales**.

Future works

Consider **other probability distributions** (e.g. Normal, LogNormal, Multinomial etc.).

Further **develop the analysis on lost sales** for the Exponential distribution.

Extend the methodology to a **non-parametric** setting.

Apply confidence-based optimization to **other stochastic optimization problems**.

Questions

