Synthesizing Filtering Algorithms for Global Chance-Constraints

Brahim Hnich1
Roberto Rossi2
S. Armagan Tarim3
Steven D. Prestwich4

1Faculty of Computer Science, Izmir University of Economics, Izmir, Turkey
2LDI, Wageningen UR, the Netherlands
3Dept. of Operations Management, Nottingham University Business School, UK
4Cork Constraint Computation Centre, University College Cork, Ireland

the 15th International Conference on Principles and Practice of Constraint Programming, CP-09
Decision Making Under Uncertainty: A Pervasive Issue

- Land-Crop Allocation
- Sustainable Energy Production
- Food Quality Control
- Production Planning
- Financial Planning
- Inventory Control
Decision Making

Decision Making Under Uncertainty: An Example

Static Stochastic Knapsack Problem

Problem: we have k kinds of items and a knapsack of size c into which to fit them. Each kind of item i has

- a deterministic profit r_i.
- a size w_i, which is not known at the time the decision has to be made. The decision maker knows the probability distribution of w_i.

A per unit penalty cost p has to be paid for exceeding the capacity of the knapsack. The probability of not exceeding the capacity of the knapsack should be greater or equal to a given threshold θ.

Objective: find the knapsack that maximizes the expected profit.
A Slightly Formal Definition

Stochastic Constraint Satisfaction Problem (Walsh, 2002)

A Stochastic Constraint Satisfaction Problem (SCSP) is a 7-tuple

$$\langle V, S, D, P, C, \theta, L \rangle.$$

- $V = \{v_1, \ldots, v_n\}$ is a set of decision variables
- $S = \{s_1, \ldots, s_n\}$ is a set of stochastic variables
- D is a function mapping each variable to a domain of potential values
- P is a function mapping each variable in S to a probability distribution for its associated domain
- C is a set of (chance)-constraints, possibly involving stochastic variables
- θ_h is a threshold probability associated to chance-constraint h
- $L = [\langle V_1, S_1 \rangle, \ldots, \langle V_i, S_i \rangle, \ldots, \langle V_m, S_m \rangle]$ is a list of decision stages.

By considering an objective function $f(\hat{V}, \hat{S})$ we obtain a SCOP.
An Example

Sample SCOP: SSKP

- $V = \{x_1, \ldots, x_3\}$
- $D(x_i) = \{0, 1\}$ $\forall i \in \{1, \ldots, 3\}$
- $S = \{w_1, \ldots, w_3\}$
- $D(w_1) = \{5(0.5), 8(0.5)\}$,
 $D(w_2) = \{3(0.5), 9(0.5)\}$,
 $D(w_3) = \{15(0.5), 4(0.5)\}$
- $C = \{Pr(w_1 x_1 + w_2 x_2 + w_3 x_3 \leq 10) \geq 0.2\}$
- $L = [\langle V, S \rangle]$
- $f(x_1, \ldots, x_3) = 8x_1 + 15x_2 + 10x_3 - 2\mathbb{E} \max \left[0, \sum_{i=1}^{3} w_i x_i - 20 \right]$
Sample SCOP: DSKP

- $V = \{x_1, \ldots, x_3\}$
- $D(x_i) = \{0, 1\}$ $\forall i \in \{1, \ldots, 3\}$
- $S = \{w_1, \ldots, w_3\}$
- $D(w_1) = \{5(0.5), 8(0.5)\}$,
 $D(w_2) = \{3(0.5), 9(0.5)\}$,
 $D(w_3) = \{15(0.5), 4(0.5)\}$
- $C = \{\Pr(w_1x_1 + w_2x_2 + w_3x_3 \leq 10) \geq 0.2\}$
- $L = [\langle \{x_1\}, \{w_1\} \rangle, \langle \{x_2\}, \{w_2\} \rangle, \langle \{x_3\}, \{w_3\} \rangle]$
- $f(x_1, \ldots, x_3) =$
 $\mathbb{E}[8x_1 + 15x_2 + 10x_3] - 2\mathbb{E} \max \left[0, \sum_{i=1}^{3} w_ix_i - 20 \right]$
A **language** specifically introduced by Tarim et al. (Tarim et al., 2006) for **modeling decision problems under uncertainty**. It captures several **high level concepts** that facilitate the process of modeling uncertainty:

- stochastic variables (independent or conditional distributions)
- several probabilistic measures for the objective function (expectation, variance, etc.)
- chance-constraints
- decision stages
- ...
int N = 3;
int c = 10;
int p = 2;
float θ = 0.2
range Object [1..3];
int value[Object] = [8,15,10];
stoch int weight[Object] = [<5(0.5),8(0.5)>,
 <3(0.5),9(0.5)>,<15(0.5),4(0.5)>];
var int+ X[Object] in 0..1;
stages = [<X,weight>];
var int+ z;

maximize sum(i in Object) X[i]*value[i] - p*z
subject to{
 z = max(0,expected(sum(i in Object) X[i]*weight[i] - c));
 prob(sum(i in Object) X[i]*weight[i] - c ≤ 0) ≥ θ;
};
int N = 3;
int c = 10;
int p = 2;
float \theta = 0.2
range Object [1..3];
int value[Object] = [8,15,10];
stoch int weight[Object] = [<5(0.5),8(0.5)>,
 <3(0.5),9(0.5)>,<15(0.5),4(0.5)>];
var int+ X[Object] in 0..1;
var int+ z;

maximize sum(i in Object) X[i] \cdot value[i] - p \cdot z
subject to{
 z = \max(0,\text{expected}(\text{sum}(i \in Object) X[i] \cdot \text{weight}[i] - c));
 \text{prob}(\text{sum}(i \in Object) X[i] \cdot \text{weight}[i] - c \leq 0) \geq \theta;
};
Scenario-based Compilation

By using the approach discussed in

it is possible to compile any SCSP/SCOP down to a deterministic equivalent CSP.
Introduction

Stochastic Constraint Programming

Solution Methods

Scenario-based Compilation

Stochastic Constraint Program

Objective:

max \(\left\{ \sum_{i=1}^{n} r_i X_i - p \left[\sum_{i=1}^{n} W_i X_i - c \right] \right\} \)

Subject to:

\[\begin{align*}
& \text{stoch myrand(onestage)=...;}
& \text{int nbItems=...;}
& \text{float c = ...;}
& \text{float q = ...;}
& \text{range Items 1..nbItems;}
& \text{range onestage 1..2;}
& \text{float W[Items,onestage]*myrand = ...;}
& \text{float r[Items] = ...;}
& \text{dvar float z = ...;}
& \text{dvar int x[Items] in 0..1;}
& \text{maximize}
& \text{sum(i in Items) x[i]*r[i] - expected(c*q)}
& \text{subject to:}
& \text{z := sum(i in Items) W[i]*x[i] = q;}
& \text{prob(sum(i in Items) W[i]*x[i] <= q) >= 0.6;}
\end{align*} \]

Stochastic OPL Model

```opl
stoch myrand(onestage)=...;
int nbItems=...;
float c = ...;
float q = ...;
range Items 1..nbItems;
rangepos onestage 1..2;
float W[Items,onestage]*myrand = ...;
float r[Items] = ...;
dvar float z = ...;
dvar int x[Items] in 0..1;
maximize 
[sum(i in Items) x[i]*r[i] - c*sum(i in Items) Pr[i]*x[i])]
subject to:
forall(i in Items)
  x[i]=sum(i in Items) W[i]*x[i] = q;
prob(sum(i in Items) Pr[i]*x[i] <= q) >= 0.6;
```

Deterministic equivalent model

```opl
int nbWorlds=...;
rangepos Worlds 1..nbWorlds;
int nbItems=...;
rangepos Items 1..nbItems;
float c = ...;
float q = ...;
rangepos Worlds,Items 1..2;
float Pr[Worlds]=...;
rangepos Items 1..2;
dvar float z = ...;
dvar int x[Items] in 0..1;
maximize 
[sum(i in Items) x[i]*r[i] - c*sum(i in Worlds) Pr[i]*x[i])]
subject to:
forall(i in Worlds)
  x[i]=sum(i in Items) W[i]*x[i] = q;
prob(sum(i in Worlds) Pr[i]*x[i] <= q) >= 0.6;
```

Compiler

Solver

Solution
SSKP: Compiled Deterministic Equivalent CSP

```java
int nbWorlds=8;
range Worlds 1..nbWorlds;
int nbItems=3;
range Items 1..nbItems;
float p = 2;
float W[Worlds,Items] =[[5,3,15],
[5,3,4],
[5,9,15],
[5,9,4],
[8,3,15],
[8,3,4],
[8,9,15],
[8,9,4]];

float Pr[Worlds]=
[0.125,0.125,0.125,0.125,0.125,0.125,0.125,0.125];

float r[Items] = [8,15,10];
float c = 10;

var float+ z[Worlds];
var int+ w[Worlds] in 0..1;
var int+ x[Items] in 0..1;

maximize ((sum(i in Items)x[i]*r[i])−p*(sum(j in Worlds)Pr[j]*z[j]))

subject to{
    forall(j in Worlds) z[j]>= (sum(i in Items)W[j,i]*x[i])−c;
    forall(j in Worlds) (sum(i in Items)W[j,i]*x[i] <= c) => w[j]=1;
    sum(j in Worlds) Pr[j]*w[j] >= 0.2;
};
```
Scenario-based Compilation

Advantages
- **Seamless** Modeling under Uncertainty!
- **Stochastic OPL** not necessarily linked to CP

Drawbacks
- **Size** of the compiled model
- **Constraint Propagation** not fully supported
An Alternative Approach to Seamless Stochastic Optimization

Stochastic Constraint Program

Objective:
\[\max \{ \sum_{i=1}^{n} r_i x_i - p \left(\sum_{i=1}^{n} w_i x_i - c \right) \} \]

Subject to:
\[\Pr \left\{ \sum_{i=1}^{n} w_i x_i \leq c \right\} \geq \theta \]

Decision variables:
\[x_i \in \{0, 1\}, \quad i = 1, \ldots, k \]

Stage structure:
\[v_1 = \{ x_1, \ldots, x_k \}, \quad s_1 = (w_1, \ldots, w_k), \quad L = [v_1, s_1] \]

Stochastic OPL Model

```plaintext
stoch myrand[onestage]=...;
int nbItems=...;
float c = ...;
float q = ...;
range Items 1..nbItems;
range onestage 1..1;
float W[Items,onestage]=myrand=...;
float r[Items] = ...;
dvar float+ z;
dvar int x[Items] in 0..1;
maximize
sum[i in Items] x[i] * r[i] = expected(z*s)
subject to{
z >= sum[i in Items] W[i] * x[i] < q;
prob(sum[i in Items] W[i] * x[i] < q) >= 0.6;
};
```

Solution Methods

Constraint Programming Solver supporting Global Chance-Constraints

Filtering Algorithms for Global Chance-Constraints
Global Chance-Constraints

Perhaps the most interesting aspect of SCP is that the concept of global constraint can be also adopted in a stochastic environment, thus leading to

Global Chance-Constraints (Rossi et al., 2008)

Stochastic Programming Model

\[\Pr \left\{ \sum_{i=1}^{k} W_i X_i \leq c \right\} \geq \theta \]

Global Chance-Constraint

\texttt{stochLinIneq}(x,W,Pr,c,0.2);
Global Chance-Constraints

Filtering in SCSPs

Stochastic Constraint Programming

Global Chance-Constraints

- represent relations among a non-predefined number of **decision** and **random** variables
- implement dedicated filtering algorithms based on
 - **feasibility** reasoning
 - **optimality** reasoning

Global Chance-Constraints performing optimality reasoning are called **Optimization-Oriented Global Chance-Constraints** (Rossi et al., 2008).
SSKP: Compiled Deterministic Equivalent CSP with Global Chance-Constraints

```c
int nbWorlds=8;
range Worlds 1..nbWorlds;
int nbItems=3;
range Items 1..nbItems;
float c = 2;
float W[Worlds,Items]=[[5.3,15],
                        [5.3,4],
                        [5.9,15],
                        [5.9,4],
                        [8.3,15],
                        [8.9,4],
                        [8.9,15],
                        [8.9,4]];
float Pr[Worlds]=
[0.125,0.125,0.125,0.125,0.125,0.125,0.125,0.125];
float r[Items] = [8.15,10];
float q = 10;

var float+ z;
var int+ x[Items] in 0..1;

maximize ((\sum(i in Items)x[i]*r[i])-c*(\max(0,z-q)));
subject to{
    stochasticLinIneq(x,W,Pr,q,0.2);
    expectedLinEq(x,W,Pr,z);
}
```
Global Chance-Constraints

Filtering in SCSPs

Algorithm 1: Filtering Algorithm

```
Algorithm 1: Filtering Algorithm
input: h \in \mathcal{PT}; A
output: Filtered \mathcal{PT} wrt h
1 begin
2     for each i \in \{0, \ldots, N-1\} do
3         for each v \in D(\mathcal{PT}[i]) do
4             \checkmark f[i,v] \leftarrow 0;
5     for each p \in \Phi do
6         Create a copy c of h,p and of the decision variables it constrains;
7         Enforce GAC on c using A;
8         for each index i of the variables in c do
9             for each v in domain of the copy of \mathcal{PT}[i] do
10                f[i,v] \leftarrow f[i,v] + \text{Pr}(\text{arcs}(p));
11         delete c and the respective copies of the decision variables;
12     for each i \in \{0, \ldots, N-1\} do
13         max[i] \leftarrow 0;
14         for each v \in D(\mathcal{PT}[i]) do
15             max[i] \leftarrow \max\{max[i], f[i,v]\};
16     for each k \in \{1, \ldots, m\} do
17         g[k] \leftarrow 0;
18         for each i \in M_k do
19             g[k] \leftarrow g[k] + max[i]
20     for each k \in \{1, \ldots, m\} do
21         for each l \in M_k do
22             for each v \in D(\mathcal{PT}[i]) do
23                 if g[k] - max[i] + f[i,v] < \theta, then
24                     prune value v from D(\mathcal{PT}[i]);
25 end
```
Global Chance-Constraints

Filtering Algorithms for GCCs: An example

\[\Pr(w_1x_1 + w_2x_2 + w_3x_3 \leq 10) > 0.5 \]

Solution Tree

- \(w_1 = 5 \)
- \(w_2 = 3 \)
- \(w_3 = 4 \)
- \(x_1 = 0 \)
- \(x_2 = 0 \)
- \(x_3 = 1 \)

- \(w_1 = 8 \)
- \(w_2 = 3 \)
- \(w_3 = 4 \)
- \(x_1 = 0 \)
- \(x_2 = 0 \)
- \(x_3 = 1 \)

- \(w_1 = 9 \)
- \(w_2 = 9 \)
- \(w_3 = 15 \)
- \(x_1 = 0 \)
- \(x_2 = 0 \)
- \(x_3 = 1 \)

- \(w_1 = 15 \)
- \(w_2 = 4 \)
- \(w_3 = 4 \)
- \(x_1 = 0 \)
- \(x_2 = 0 \)
- \(x_3 = 1 \)
Global Chance-Constraints

Filtering Algorithms for GCCs: An example

\[\Pr(w_1 x_1 + w_2 x_2 + w_3 x_3 \leq 10) > 0.5 \]

Search Tree

Solution Tree

\[x_1 = \{0, 1\} \]
\[x_2 = \{0, 1\} \]
\[x_3 = \{0, 1\} \]
Global Chance-Constraints

Filtering Algorithms for GCCs: An example

\[\Pr (w_1x_1 + w_2x_2 + w_3x_3 \leq 10) > 0.5 \]

Search Tree

Solution Tree

- \(w_1 = 5 \)
- \(x_1 = \{0, 1\} \)
- \(x_2 = \{0, 1\} \)
- \(x_3 = \{0, 1\} \)

\(w_1 = 8 \)
\(w_2 = 3 \)
\(w_3 = 4 \)

\(w_2 = 9 \)
\(w_3 = 15 \)

\(x_1 = \{0, 1\} \)
\(x_2 = \{0, 1\} \)
\(x_3 = \{0\} \)
Global Chance-Constraints

Filtering Algorithms for GCCs: An example

\[\Pr (w_1 x_1 + w_2 x_2 + w_3 x_3 \leq 10) > 0.5 \]

Search Tree

- \(x_1 = \{0,1\} \)
- \(x_2 = \{0,1\} \)
- \(x_3 = \{0,1\} \)

Solution Tree

- \(w_1 = 5 \)
- \(w_2 = 9 \)
- \(w_3 = 15 \)

\(x_1 = \{0,1\} \quad x_2 = \{0,1\} \quad x_3 = \{0\} \)

\(x_1 = \{0,1\} \quad x_2 = \{0,1\} \quad x_3 = \{0,1\} \)
Global Chance-Constraints

Filtering Algorithms for GCCs: An example

Pr(w₁x₁+w₂x₂+w₃x₃ ≤ 10) > 0.5

Search Tree

Solution Tree

x₁={0,1} x₂={0,1} x₃={0}

x₁={0,1} x₂={0,1} x₃={0,1}

x₁={0,1} x₂={0,1} x₃={0}

x₁={0,1} x₂={0,1} x₃={0,1}

x₁={0,1} x₂={0,1} x₃={0}

x₁={0,1} x₂={0,1} x₃={0,1}

x₁={0,1} x₂={0,1} x₃={0,1}
Filtering Algorithms for GCCs: An example

\[\Pr(w_1x_1 + w_2x_2 + w_3x_3 \leq 10) > 0.5 \]

Search Tree

Solution Tree

\(x_1 = \{1\} \quad x_2 = \{0,1\} \quad x_3 = \{0\} \)
Filtering Algorithms for GCCs: An example

$$\Pr(w_1x_1+w_2x_2+w_3x_3 \leq 10) > 0.5$$

Search Tree

Solution Tree

$$x_1 = \{1\}$$ $$x_2 = \{0,1\}$$ $$x_3 = \{0\}$$

$$w_1 = 5$$

$$w_2 = 3$$ $$w_3 = 4$$

$$w_1 = 8$$

$$w_2 = 3$$ $$w_3 = 4$$

$$w_2 = 9$$ $$w_3 = 15$$

$$w_3 = 15$$

$$w_1 = 15$$

$$w_2 = 9$$ $$w_3 = 15$$

$$w_2 = 3$$ $$w_3 = 4$$

$$w_3 = 4$$
Filtering Algorithms for GCCs: An example

\[\Pr(w_1 x_1 + w_2 x_2 + w_3 x_3 \leq 10) > 0.5 \]
Filtering Algorithms for GCCs: An example

\[\Pr(w_1x_1 + w_2x_2 + w_3x_3 \leq 10) > 0.5 \]
Filtering Algorithms for GCCs: An example

\[\Pr(w_1 x_1 + w_2 x_2 + w_3 x_3 \leq 10) > 0.5 \]
Global Chance-Constraints

Filtering Algorithms for GCCs: An example

$$\Pr (w_1 x_1 + w_2 x_2 + w_3 x_3 \leq 10) \geq 0.5$$
Global Chance-Constraints

Filtering Algorithms for GCCs: An example

\[\Pr (w_1x_1 + w_2x_2 + w_3x_3 \leq 10) \geq 0.5 \]
Filtering Algorithms for GCCs: An example

\[\Pr(w_1 x_1 + w_2 x_2 + w_3 x_3 \leq 10) \geq 0.5 \]
Filtering Algorithms for GCCs: An example

\[\Pr(w_1x_1 + w_2x_2 + w_3x_3 \leq 10) \geq 0.5 \]
Filtering Algorithms for GCCs: An example

Pr\((w_1 x_1 + w_2 x_2 + w_3 x_3 \leq 10) \geq 0.5 \)
Filtering Algorithms for GCCs: An example

\[P_r(w_1x_1 + w_2x_2 + w_3x_3 \leq 10) \geq 0.5 \]
Global Chance-Constraints

Filtering Algorithms for GCCs: An example

\[\Pr(w_1x_1 + w_2x_2 + w_3x_3 \leq 10) \geq 0.5 \]
Global Chance-Constraints

Filtering Algorithms for GCCs: An example

\[\Pr(w_1x_1 + w_2x_2 + w_3x_3 \leq 10) \geq 0.5 \]
Random SCSPs

- In our experiments we considered a number of **randomly generated SCSPs**
- The SCSPs considered feature
 - 5 chance-constraints
 - 4 integer decision variables, x_1, \ldots, x_4
 - 8 stochastic variables, s_1, \ldots, s_8
 - 3 possible stage structure (single and multi-stage problems)
The model that uses GCC is much more compact!

<table>
<thead>
<tr>
<th>Stages</th>
<th>SBA Dec</th>
<th>SBA Cons</th>
<th>GCC Dec</th>
<th>GCC Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6484</td>
<td>6485</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6554</td>
<td>6485</td>
<td>74</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>6739</td>
<td>6485</td>
<td>259</td>
<td>5</td>
</tr>
</tbody>
</table>
The test bed comprised, in total, 270 instances
To each instance we assigned a time limit of 240 seconds for running the search

<table>
<thead>
<tr>
<th>Stages</th>
<th>Solved Instances</th>
<th>Speed up</th>
<th>Node Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SBA</td>
<td>GCC</td>
<td>GCC</td>
</tr>
<tr>
<td>1</td>
<td>90</td>
<td>90</td>
<td>2.5×</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>45</td>
<td>13×</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>31</td>
<td>15×</td>
</tr>
</tbody>
</table>
Comparison

Run Times

![Run Times Graph](image-url)
Comparison

Explored Nodes
Comparison

Filtering

Domain Reduction

Percentage of decision variables assigned

Percentage of values pruned
We discussed a **Framework** for **Modeling Decision Problems under Uncertainty**

- Stochastic Constraint Programming
- Global Chance-constraints

Contribution

A generic approach for **constraint reasoning under uncertainty**.

Works with any existing propagation algorithm!

Drawback

Only implemented for linear inequalities/equalities:

i.e. **SSKP** → \(\Pr(w_1x_1 + w_2x_2 + w_3x_3 \leq 10) \geq 0.2 \)
Questions