Synthesizing Filtering Algorithms in Stochastic Constraint Programming

Brahim Hnich1
Roberto Rossi2
S. Armagan Tarim3
Steven D. Prestwich4

1Faculty of Computer Science, Izmir University of Economics, Izmir, Turkey
1LDI, Wageningen UR, the Netherlands
3Dept. of Operations Management, Nottingham University Business School, UK
4Cork Constraint Computation Centre, University College Cork, Ireland

XL Annual Conference of the Italian Operational Research Society, AIRO 2009
A Complete Overview
Decision Making in a Deterministic Setting

Decision Support Systems
- ERP
- CRM
- Inventory Control
- Production Planning
- Transport Scheduling

Applications
- Decision Making
- Constraint Programming
- Stochastic Constraint Programming
- Ongoing Research
- Conclusions

Theoretical Results
- Simplex
- Shortest Path

Modeling Frameworks
- MIP
- CP
- LP

Minimize \(\sum c_j x_j \)
Subject to \(\sum a_{ij} x_j \geq b_i \) for all \(i \)
\(x_j \geq 0 \) for all \(j \)
Decision Making in a Deterministic Setting
Decision Making in a Deterministic Setting

- Decision Support Systems
- Applications
- Modeling Frameworks
- Theoretical Results
- MIP
- CP
- LP
- Simplex
- Shortest Path
- Production Planning
- Transport Scheduling
- ERP
- CRM
- Inventory Control

Mathematical Model:

Minimize: \(\sum_{j} c_j x_j \)

Subject to:

\(\sum_{j} a_{ij} x_j \geq b_i \) \(\forall i \)

\(x_j \geq 0 \) \(\forall j \)
Decision Making Under Uncertainty: A Pervasive Issue
Decision Making Under Uncertainty
Decision Making

Decision Making Under Uncertainty

- Constraint Programming
- Stochastic Constraint Programming
- Ongoing Research
- Conclusions

Introduction

Decision Support Systems

Applications

Modeling Frameworks

Theoretical Results

Simplex

Convex Analysis

Inventory Control

Production Planning

Transport Scheduling

STOCHASTIC OPL

CRM

ERP

Decision Making Under Uncertainty

\[
\min_{x \in S} \{ g(x) = E_{p \sim G(x,W)} \}
\]
Decision Making in a Deterministic Setting

0-1 Knapsack Problem

Problem: we have k kinds of items, 1 through k. Each kind of item i has

- a value r_i
- a weight w_i.

We usually assume that all values and weights are non-negative. The **maximum weight** that we can carry in the bag is c.

Objective: find a set of objects that provides the maximum value and that fits in the given capacity.
Decision Making in a Deterministic Setting

0-1 KP: MIP Formulation

Objectives:
\[\max \sum_{i=1}^{k} r_i x_i \]

Constraints:
\[\sum_{i=1}^{k} w_i x_i \leq c \]

Decision variables:
\[x_i \in \{0, 1\} \quad \forall i \in \{1, \ldots, k\} \]
Decision Making Under Uncertainty

Static Stochastic Knapsack Problem

Problem: we have k kinds of items and a knapsack of size c into which to fit them. Each kind of item i has

- a **deterministic profit** r_i.
- a **size** w_i, which is not known at the time the decision has to be made. The decision maker knows the probability distribution of w_i.

A per unit **penalty cost** p has to be paid for exceeding the capacity of the knapsack. The **probability of not exceeding** the capacity of the knapsack should be greater or equal to a given **threshold** θ.

Objective: find the knapsack that maximizes the expected profit.
SSKP: Stochastic Programming Formulation

Objective:

\[
\max \left\{ \sum_{i=1}^{k} r_i X_i - \rho \mathbb{E} \left[\sum_{i=1}^{k} W_i X_i - c \right] ^+ \right\}
\]

Subject to:

\[
\Pr \left\{ \sum_{i=1}^{k} W_i X_i \leq c \right\} \geq \theta
\]

Decision variables:

\[X_i \in \{0, 1\} \quad \forall i \in 1, \ldots, k\]

Stochastic variables:

\[W_i \rightarrow \text{item } i \text{ weight } \forall i \in 1, \ldots, k\]

Stage structure:

\[V_1 = \{X_1, \ldots, X_k\}\]

\[S_1 = \{W_1, \ldots, W_k\}\]

\[L = [\langle V_1, S_1 \rangle]\]
Basic Notions

Formal Background

A slightly formal definition

A **Constraint Satisfaction Problem** (CSP) is a triple $\langle V, D, C \rangle$.

- $V = \{v_1, \ldots, v_n\}$ is a set of variables
- D is a function mapping each variable v_i to a domain $D(v_i)$ of values
- C is a set of constraints.

A **Constraint Optimization Problem** (COP) consists of a CSP and objective function $f(\hat{V})$ defined on a subset \hat{V} of the decision variables in V. The aim in a COP is to find a feasible solution that minimizes (maximizes) the objective function.
Basic Notions

Solution Method

Strategy

- **Constraint Programming** proposes to solve CSPs/COPs by associating with each constraint a **filtering algorithm**.
- A **filtering algorithm** removes from decision variable domains **values that cannot belong** to any solution of the CSP/COP.
- **Constraint Propagation** is the process that repeatedly calls filtering algorithms until no new deduction can be made.
- **Constraint Solving** interleaves **filtering algorithms** and a **search procedure** (for instance a backtracking algorithm).
Sample COP: 0-1 KP

- **Variables:**
 - \(V = \{ x_1, \ldots, x_3 \} \)
- **Domains:**
 - \(D(x_i) = \{ 0, 1 \} \quad \forall \, i \in \{ 1, \ldots, 3 \} \)
- **Constraints:**
 - \(C = \{ 8x_1 + 5x_2 + 4x_3 \leq 10 \} \)
- **Objective:**
 - \(f(x_1, \ldots, x_3) = 8x_1 + 15x_2 + 10x_3 \)

Filtered domains at \(P_1 \)

- \(D(x_1) = \{ 1 \} \)
- \(D(x_2) = \{ 0 \} \)
- \(D(x_3) = \{ 0 \} \)
- \(D(z) = \{ 8 \} \)
In constraint programming is common to find constraints over a non-predefined number of variables

- alldifferent
- element
- cumulative
- ...

These constraints are called global constraints

- they can be used in a variety of situations
- they are associated with powerful filtering strategies
- new custom global constraints can be defined
Global Constraints

Filtering algorithms

- **detect inconsistencies** in a proactive fashion
- **speed up** the search

provided that the time spent in filtering is less then the time saved in terms of search efforts. A challenging research topic is the **design** of efficient filtering strategies.
A slightly formal definition

A Stochastic Constraint Satisfaction Problem (SCSP) is a 7-tuple

\[\langle V, S, D, P, C, \theta, L \rangle. \]

- \(V = \{v_1, \ldots, v_n\} \) is a set of decision variables
- \(S = \{s_1, \ldots, s_n\} \) is a set of stochastic variables
- \(D \) is a function mapping each variable to a domain of potential values
- \(P \) is a function mapping each variable in \(S \) to a probability distribution for its associated domain
- \(C \) is a set of (chance)-constraints, possibly involving stochastic variables
- \(\theta_h \) is a threshold probability associated to chance-constraint \(h \)
- \(L = [\langle V_1, S_1 \rangle, \ldots, \langle V_i, S_i \rangle, \ldots, \langle V_m, S_m \rangle] \) is a list of decision stages.

By considering an objective function \(f(\hat{V}, \hat{S}) \) we obtain a SCOP.
Basic Notions

An Example

Sample SCOP: SSKP

- \(V = \{x_1, \ldots, x_3\} \)
- \(D(x_i) = \{0, 1\} \quad \forall i \in \{1, \ldots, 3\} \)
- \(S = \{w_1, \ldots, w_3\} \)
- \(D(w_1) = \{5(0.5), 8(0.5)\}, D(w_2) = \{3(0.5), 9(0.5)\}, D(w_3) = \{15(0.5), 4(0.5)\} \)
- \(C = \{Pr(w_1 x_1 + w_2 x_2 + w_3 x_3 \leq 10) \geq 0.2\} \)
- \(L = [\langle V, S \rangle] \)
- \(f(x_1, \ldots, x_3) = 8x_1 + 15x_2 + 10x_3 - 2E \max \left[0, \sum_{i=1}^3 w_i x_i - 20 \right] \)
Basic Notions

An Example

Sample SCOP: DSKP

- \(V = \{x_1, \ldots, x_3\} \)
- \(D(x_i) = \{0, 1\} \quad \forall i \in \{1, \ldots, 3\} \)
- \(S = \{w_1, \ldots, w_3\} \)
- \(D(w_1) = \{5(0.5), 8(0.5)\}, D(w_2) = \{3(0.5), 9(0.5)\}, D(w_3) = \{15(0.5), 4(0.5)\} \)
- \(C = \{Pr(w_1x_1 + w_2x_2 + w_3x_3 \leq 10) \geq 0.2\} \)
- \(L = [\langle \{x_1\}, \{w_1\}\rangle, \langle \{x_2\}, \{w_2\}\rangle, \langle \{x_3\}, \{w_3\}\rangle] \)
- \(f(x_1, \ldots, x_3) = \)
 \[
 \mathbb{E}[8x_1 + 15x_2 + 10x_3] - 2\mathbb{E} \max \left[0, \sum_{i=1}^{3} w_i x_i - 20 \right]
 \]
A **language** specifically introduced by Tarim et al. (Tarim et al., 2006) for **modeling decision problems under uncertainty**. It captures several **high level concepts** that facilitate the process of modeling uncertainty:

- stochastic variables (independent or conditional distributions)
- several probabilistic measures for the objective function (expectation, variance, etc.)
- chance-constraints
- decision stages
- ...
Stochastic OPL

```plaintext
int N = 3;
int c = 10;
int p = 2;
float θ = 0.2
range Object [1..3];
int value[Object] = [8,15,10];
stoch int weight[Object] = [<5(0.5),8(0.5)>,
                          <3(0.5),9(0.5)>,<15(0.5),4(0.5)>];
var int+ X[Object] in 0..1;
stages = [<X,weight>];
var int+ z;

maximize sum(i in Object) X[i]*value[i] - p*z
subject to{
  z = max(0,expected(sum(i in Object) X[i]*weight[i] - c));
  prob(sum(i in Object) X[i]*weight[i] - c ≤ 0) ≥ θ;
};
```
int N = 3;
int c = 10;
int p = 2;
float θ = 0.2
range Object [1..3];
int value[Object] = [8,15,10];
stoch int weight[Object] = [<5(0.5),8(0.5)>,
 <3(0.5),9(0.5)>,<15(0.5),4(0.5)>];
var int+ X[Object] in 0..1;
var int+ z;

maximize sum(i in Object) X[i] * value[i] - p * z
subject to{
z = max(0,expected(sum(i in Object) X[i] * weight[i] - c));
prob(sum(i in Object) X[i] * weight[i] - c ≤ 0) ≥ θ;
}
By using the approach discussed in

S. A. Tarim, S. Manandhar and T. Walsh,
Stochastic Constraint Programming: A Scenario-Based Approach,
 Constraints, Vol.11, pp.53-80, 2006

it is possible to compile any SCSP/SCOP down to a deterministic equivalent CSP.
Scenario-based Compilation

Stochastic Constraint Program

```
Objective: \( \max \left\{ \sum_{i=1}^{n} r_i x_i - p \sum_{i=1}^{n} W_i x_i - c^i \right\} \)
```

Stochastic OPL Model

```
stoch myrand[onstage]=...;
int nbItems=...;
float c = ...;
float q = ...;
range Items 1..nbItems;
range onstage 1..1;
float W[Items,onstage]*myrand = ...;
float r[Items] = ...;
dvar float s;
dvar int x[Items] in 0..1;
maximize
sum(i in Items) x[i]*r[i] - expected(c^n);

subject to:
s >= sum(i in Items) W[i]*x[i] - q;
prob(sum(i in Items) W[i]*x[i] <= q) >= 0.6;
```

Deterministic equivalent model

```
int nbWorlds=...;
range Worlds 1..nbWorlds;
int nbItems=...;
range Items 1..nbItems;
float c = ...;
float W[Worlds,Items] = ...;
float Pr[Worlds]=...;
float r[Items] = ...;
float q = ...;
cvar float s[Worlds];
cvar int x[Items] in 0..1;
maximize
\( \sum_{i} (\text{sum}(j \text{ in Items}) x[i][j] r[i]) - c \cdot \text{sum}(j \text{ in Worlds}) \cdot Pr[j] \cdot x[j][j] \)
subject to:
\( \forall j \text{ in Worlds} \)
\( x[i][j] = \text{sum}(i \text{ in Items}) W[j,i] x[i] \cdot q; \)
\( \text{sum}(j \text{ in Worlds}) \cdot Pr[j] \cdot x[i][j] \cdot x[i][j] \cdot q \) >= 0.2;
```
SSKP: Compiled Deterministic Equivalent CSP

```plaintext
int nbWorlds=8;
range Worlds 1..nbWorlds;
int nbItems=3;
range Items 1..nbItems;
float c = 2;
float W[Worlds,Items] =[[5.3,15],
[5.3,4],
[5.9,15],
[5.9,4],
[8.3,15],
[8.3,4],
[8.9,15],
[8.9,4]];

float Pr[Worlds]=
[0.125,0.125,0.125,0.125,0.125,0.125,0.125,0.125];

float r[Items] = [8,15,10];
float q = 10;

var float+ z[Worlds];
var int+ x[Items] in 0..1;

maximize ((sum(i in Items)x[i]*r[i])-c*(sum(j in Worlds)Pr[j]*z[j]))

subject to{
    forall(j in Worlds) z[j]=(sum(i in Items)W[j,i]*x[i])-q;
    sum(j in Worlds) Pr[j]*(sum(i in Items)W[j,i]*x[i] <= q) >= 0.2;
};
```
Scenario-based Compilation

Advantages
- **Seamless** Modeling under Uncertainty!
- **Stochastic OPL** not necessarily linked to CP

Drawbacks
- **Size** of the compiled model
- **Constraint Propagation** not fully supported
Solution Methods

An Alternative Approach to Seamless Stochastic Optimization

Stochastic Constraint Program

Objective:
\[\max \left\{ \sum_{i=1}^{n} r_i X_i \right\} \]
Subject to:
\[\sum_{i=1}^{n} W_i X_i \leq c \]
Decision variables:
\[X_i \in \{0, 1\} \]
Stochastic variables:
\[W_i \rightarrow \text{item weight} \]
Stage structure:
\[V_i = \{X_1, \ldots, X_n\} \]

Stochastic OPL Model

stoch myrand[onstage]=...;
int nbItems=...
float c = ...
float q = ...
range Items 1..nbItems;
ranged onstage 1..1;
float W[Items, onstage] = myrand = ...;
float r[Items] = ...
dvar float x;
dvar int x[Items] in 0..1;
maximize
\[\sum_{i=1}^{n} x[i] \cdot r[i] - \text{expected}(x\cdot s) \]
subject to:
\[z \geq \sum_{i=1}^{n} W[i] \cdot x[i] \cdot q; \]
\[\text{prob}(\sum_{i=1}^{n} W[i] \cdot x[i] \cdot q \geq 0.6) = \text{...}; \]

Constraint Programming Solver supporting Global Chance-Constraints

Filtering Algorithms for Global Chance-Constraints
Also in Stochastic Constraint Programming (SCP) we have:
- constraints
- filtering algorithms

In contrast to CP, in SCP constraints divide into:
- hard constraints
- chance-constraints

Global Chance-Constraints

Perhaps the most interesting aspect of SCP is that the concept of **global constraint** can be also adopted in a stochastic environment, thus leading to:
- Global Chance-Constraints (Rossi et al., 2008)
Global Chance-Constraints

Filtering in SCSPs

Stochastic Programming Model

\[\Pr \left\{ \sum_{i=1}^{k} \mathcal{W}_i X_i \leq c \right\} \geq \theta \]

Global Chance-Constraint

`stochLinIneq(x,W,Pr,q,0.2);`
SSKP: Compiled Deterministic Equivalent CSP with Global Chance-Constraints

```c
int nbWorlds = 8;
range Worlds 1..nbWorlds;
int nbItems = 3;
range Items 1..nbItems;
float c = 2;
float W[Worlds, Items] =
[[5.3,15],
 [5.3,4],
 [5.9,15],
 [5.9,4],
 [8.3,15],
 [8.9,4],
 [8.9,15],
 [8.9,4]];

float Pr[Worlds] =
[0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125];

float r[Items] = [8.15, 10];
float q = 10;

var float+ z;
var int+ x[Items] in 0..1;

maximize ((sum(i in Items)x[i]*r[i]) - c*(max(0,z-q)));
subject to{
    stochLinIneq(x, W, Pr, q, 0.2);
    expectedLinEq(x, W, Pr, z);
};
```
Global Chance-Constraints

Filtering in SCSPs

Stochastic Constraint Programming

Global Chance-Constraints

- represent relations among a non-predefined number of decision and random variables
- implement dedicated filtering algorithms based on
 - feasibility reasoning
 - optimality reasoning

Global Chance-Constraints performing optimality reasoning are called **Optimization-Oriented Global Chance-Constraints** (Rossi et al., 2008).
Filtering in SCSPs

“Synthesizing Filtering Algorithms for Global Chance-Constraints” (Hnich et al., 2009)
Filtering Algorithms for GCCs: An example

\[\Pr(w_1x_1 + w_2x_2 + w_3x_3 \leq 10) > 0.5 \]

Search Tree

\[x_1 = \{0, 1\} \]
\[x_2 = \{0, 1\} \]
\[x_3 = \{0, 1\} \]

Solution Tree

\[w_1 = 5 \]
\[w_2 = 3 \]
\[w_3 = 4 \]
\[w_2 = 9 \]
\[w_3 = 15 \]
\[w_1 = 8 \]
\[w_2 = 3 \]
\[w_3 = 4 \]
\[w_2 = 9 \]
\[w_3 = 15 \]
\[w_3 = 4 \]
\[w_3 = 4 \]
Global Chance-Constraints

Filtering Algorithms for GCCs: An example

\[\Pr(w_1x_1 + w_2x_2 + w_3x_3 \leq 10) > 0.5 \]

Search Tree

Solution Tree

\[x_1 = \{0, 1\} \quad x_2 = \{0, 1\} \quad x_3 = \{0\} \]
Filtering Algorithms for GCCs: An example

\[\Pr (w_1 x_1 + w_2 x_2 + w_3 x_3 \leq 10) > 0.5 \]

Search Tree

Solution Tree

\[x_1 = \{0, 1\} \quad x_2 = \{0, 1\} \quad x_3 = \{0\} \]

\[x_1 = \{0, 1\} \quad x_2 = \{0, 1\} \quad x_3 = \{0, 1\} \]
Global Chance-Constraints

Filtering Algorithms for GCCs: An example

\[\Pr(w_1x_1 + w_2x_2 + w_3x_3 \leq 10) > 0.5 \]

Search Tree

- \(x_1 = \{0, 1\} \)
- \(x_2 = \{0, 1\} \)
- \(x_3 = \{0, 1\} \)

Solution Tree

- \(x_1 = \{0, 1\} \)
- \(x_2 = \{0, 1\} \)
- \(x_3 = \{0\} \)

- \(x_1 = \{0, 1\} \)
- \(x_2 = \{0, 1\} \)
- \(x_3 = \{0, 1\} \)

- \(x_1 = \{0, 1\} \)
- \(x_2 = \{0, 1\} \)
- \(x_3 = \{0\} \)

- \(x_1 = \{0, 1\} \)
- \(x_2 = \{0, 1\} \)
- \(x_3 = \{0, 1\} \)

- \(x_1 = \{0, 1\} \)
- \(x_2 = \{0, 1\} \)
- \(x_3 = \{0\} \)

- \(x_1 = \{0, 1\} \)
- \(x_2 = \{0, 1\} \)
- \(x_3 = \{0, 1\} \)

- \(x_1 = \{0, 1\} \)
- \(x_2 = \{0, 1\} \)
- \(x_3 = \{0\} \)

- \(x_1 = \{0, 1\} \)
- \(x_2 = \{0, 1\} \)
- \(x_3 = \{0, 1\} \)
Global Chance-Constraints

Filtering Algorithms for GCCs: An example

$$\Pr (w_1 x_1 + w_2 x_2 + w_3 x_3 \leq 10) > 0.5$$
Global Chance-Constraints

Filtering Algorithms for GCCs: An example

\[\Pr(w_1x_1 + w_2x_2 + w_3x_3 \leq 10) > 0.5 \]

Search Tree

Solution Tree

- \(x_1 = \{1\} \) \(x_2 = \{0, 1\} \) \(x_3 = \{0\} \)
- \(x_1 = \{1\} \) \(x_2 = \{0, 1\} \) \(x_3 = \{0\} \)
Filtering Algorithms for GCCs: An example

\[\Pr(w_1 x_1 + w_2 x_2 + w_3 x_3 \leq 10) > 0.5 \]
Filtering Algorithms for GCCs: An example

\[\Pr (w_1 x_1 + w_2 x_2 + w_3 x_3 \leq 10) > 0.5 \]
Filtering Algorithms for GCCs: An example

\[\Pr(w_1x_1 + w_2x_2 + w_3x_3 \leq 10) > 0.5 \]
Filtering Algorithms for GCCs: An example

\[\Pr(w_1x_1 + w_2x_2 + w_3x_3 \leq 10) \geq 0.5 \]
Filtering Algorithms for GCCs: An example

\[\Pr(w_1x_1 + w_2x_2 + w_3x_3 \leq 10) \geq 0.5 \]
Filtering Algorithms for GCCs: An example

\[\Pr(w_1 x_1 + w_2 x_2 + w_3 x_3 \leq 10) \geq 0.5 \]
Global Chance-Constraints

Filtering Algorithms for GCCs: An example

\[\Pr (w_1 x_1 + w_2 x_2 + w_3 x_3 \leq 10) \geq 0.5 \]

Search Tree

Solution Tree

- \(x_1 = \emptyset \), \(x_2 = \{1\} \), \(x_3 = \{1\} \)
- \(x_1 = \emptyset \), \(x_2 = \{1\} \), \(x_3 = \{1\} \)
- \(x_1 = \emptyset \), \(x_2 = \{1\} \), \(x_3 = \{0\} \)
Global Chance-Constraints

Filtering Algorithms for GCCs: An example

\[\Pr(w_1 x_1 + w_2 x_2 + w_3 x_3 \leq 10) \geq 0.5 \]
Global Chance-Constraints

Filtering Algorithms for GCCs: An example

\[\Pr(w_1x_1 + w_2x_2 + w_3x_3 \leq 10) \geq 0.5 \]
Global Chance-Constraints

Filtering Algorithms for GCCs: An example

\[\Pr(w_1x_1 + w_2x_2 + w_3x_3 \leq 10) \geq 0.5 \]
Filtering Algorithms for GCCs: An example

\[\Pr(w_1 x_1 + w_2 x_2 + w_3 x_3 \leq 10) \geq 0.5 \]

Contribution
A generic approach for constraint reasoning under uncertainty.
Works with any existing propagation algorithm!
B. Hnich, R. Rossi, S. A. Tarim and S. Prestwich,
Synthesizing Filtering Algorithms for Global Chance-Constraints,
15th International Conference on Principles and Practice of Constraint Programming (CP-09) Lisbon, Portugal, September 21-24, 2009

Drawback

Only implemented for linear inequalities/equalities:
\[
\text{stochLinIneq}(x, W, Pr, q, 0.2);
\]
i.e. SSKP $\rightarrow \text{Pr}(w_1x_1 + w_2x_2 + w_3x_3 \leq 10) \geq 0.2$
Future work

Considering more global constraints:

allDifferent()
NValue()
Cumulative()

...
Integrated Development Environment
Summary

We discussed a Framework for Modeling Decision Problems under Uncertainty

- Stochastic Constraint Programming
- Global Chance-constraints
- Stochastic OPL