
Symmetry Breaking by

Nonstationary Optimisation

S. Prestwich, B. Hnich, R. Rossi, S. A. Tarim

4C/UCC, Cork

Izmir University of Economics, Turkey

Hacettepe University, Turkey

(AICS’08)

introduction

finite-domain CSP: variables v1 . . . vn with do-

mains dom(vi) = {a1, . . . , am} of values, plus

constraints

the problem: find an assignment of values to

all variables such that no constraint is violated

many CSPs contain symmetries: transforma-

tions of solutions that yield other solutions

eg N-queens has 8 symmetries: each solution

may be rotated through 90 degrees and re-

flected to obtain other solutions

other problems may have many symmetries, eg

BIBDs...

1

BIBDs

an arrangement of v distinct objects into b

blocks such that each block contains exactly

k distinct objects, each object occurs in ex-

actly r different blocks, and every two distinct

objects occur together in exactly λ blocks

or: a binary matrix with v rows, b columns, r

ones per row, k ones per column, and scalar

product λ between any pair of distinct rows

specified by parameters (v, b, r, k, λ), eg (6,10,5,3,2):

1011100001

0011011010

1101000110

0000101111

0110010101

1100111000

2

very challenging with quite small open prob-

lems, eg (22,33,12,8,4)

partly due to the many symmetries: given any

solution, any two rows or columns may be ex-

changed to obtain another solution

the symmetry group is the direct product Sv ×

Sb so there are v!b! symmetries, eg (9,120,40,3,6)

has more than 10200

3

symmetry breaking

symmetry implies that search effort is being

wasted by exploring equivalent regions of the

search space more than once

by symmetry breaking we may speed up search

significantly

symmetries form groups, and there are close

connections between SB and computational group

theory

several distinct methods have been reported

for SB in CSPs...

4

SB methods

reformulating a problem to eliminate symme-

tries is excellent when possible, but often dif-

ficult or impossible

adding constraints is probably the most com-

mon method

all symmetries can in principle be broken by

this method, which was developed into the lex-

leader method

too many constraints might be needed, but

a subset can be used for partial SB, eg for

BIBDs we can break row and column symme-

tries (double-lex) but not row-column symme-

tries

adding constraints also does not respect the

search heuristics, but dynamic SB methods have

been devised that do respect search heuris-

tics...

5

SBDS adds constraints during search so that,

after backtracking from a decision, future sym-

metrically equivalent decisions are disallowed

can be implemented by combining a constraint

solver with the GAP CGT system (GAP-SBDS)

which allows symmetries to be specified com-

pactly via group generators

it can handle billions of symmetries but no

more

STAB is a related method that only adds con-

straints that do not affect the current partial

variable assignment

does not break all symmetries but has given

good results on problems with up to 1091 sym-

metries

6

SBDD detects when the current search state

is symmetrical to a previously-explored “dom-

inating” state, thus respecting search heuris-

tics: dominance detection

no need to compare the current search state

with all previous states: only those correspond-

ing to fully-explored subtrees (nogoods), at

worst linear in the number of variables

GAP-SBDD exists, but better results are found

by treating dominance detection (which is NP-

hard: subgraph isomorphism) as an auxiliary

CSP and solved by CP methods

SBDD solves the space problem (doesn’t add

any SB constraints) and is the most scalable

method

7

our method

we describe and test a new approach to partial

SB

related to SBDD but uses a different domi-

nance detection technique, expressed as a non-

stationary optimisation problem and solved by

local search

this opens up SB to metaheuristics, which of-

ten scale better than backtrack-based algo-

rithms

lower time and memory requirements than SBDD

and, unlike other partial symmetry breaking

methods, the symmetries it fails to break are

likely to be those with little effect on runtime

8

a new dominance test

we use a different dominance test than SBDD:

if we can apply a group element g ∈ G to the

current partial assignment A s.t. Ag ≺lex A,

then (under some assumptions such as DFS)

Ag dominates A in the SBDD sense and we

can backtrack from A

(informal proof in paper)

9

dominance as optimisation

we can express the dominance test as an op-

timisation problem, suitable for solution by LS

instead of CP methods

the problem at each search node A is to find a

g ∈ G such that Ag ≺lex A

we can treat G as a LS space with each g ∈ G

being a search state

neighbourhood structure on G: choose some

H ⊂ G: from any search state g the possible

local moves are the elements of H leading to

neighbouring states g ◦ H

10

so all G elements are LS states, and some of

them (H) are also local moves

easy to show: if H is a generator set for G

(〈H〉 = G) then the search space is connected

using a generator also gives small neighbour-

hoods: any group G has a generator of size

log2(|G|) or smaller

but we can also use a non-generator H and

allow some random moves from G \ H: we do

this for heuristic reasons

objective function value of a state g: lex-ranking

of Ag (which can be considered as a number)

11

LS: from each state g try to find a local move h

that reduces the objective function (Ag◦h ≺lex

Ag)

if a series of moves (h1, h2, . . .) reduces the

lex-ranking sufficiently then we hope to find

Ag◦h1◦h2◦... ≺lex A, establishing dominance

even smaller memory requirement than SBDD,

as we need store only the current partial as-

signment A and current group element g (plus

whatever data structures are needed by the un-

derlying constraint solver)

12

dominance as nonstationary

optimisation

how much effort should we devote to solving

these dominance detection problems?

if LS fails to find a dominating state, this might

be because there is no such state...

...but it could also be because the algorithm

has not searched hard enough

too little search might miss important symme-

tries, while too much will slow down DFS

this is a drawback of using an incomplete ap-

proach such as LS

13

our answer is to devote very little effort indeed

at each search node: we apply only one local

move h ∈ H per search tree node

LS is now being used to solve an optimisation

problem whose objective function changes in

time: as DFS changes variable assignments

A, the objective value of any given g changes

because it depends on Ag

this is called nonstationary optimisation so we

call our method Symmetry Breaking by Non-

stationary Optimisation (SBNO)

14

if a dominance is not detected by LS then it

might detect it after a few extra local moves

and search tree nodes

DFS can then backtrack, possibly jumping many

levels in the search tree

a nice feature:

• a symmetry that would only save a small

amount of DFS effort is unlikely to be de-

tected by SBNO, because DFS might back-

track past A before an appropriate g can be

discovered

• one that would save a great deal of DFS

effort has a great deal of time in which to

be detected by LS

15

so we hope that SBNO will detect and break

all important symmetries: those that make a

significant difference to the size of the search

tree and hence the execution time

this is unlike partial symmetry breaking meth-

ods such as double-lex and STAB, which choose

symmetries to break for space reasons

16

experiments

we test SBNO on BIBDs and compare with

published results for other methods

we use the most direct CSP model for BIBDs:

represent each matrix element by a binary vari-

able, add 3 types of constraint:

(i) v b-ary constraints for the r ones per row

(ii) b v-ary constraints for the k ones per col-

umn

(iii) v(v−1)/2 2b-ary constraints for the λ match-

ing ones in each pair of rows

17

a simple BIBD solver

we implemented a simple BIBD solver: DFS

with static variable ordering ordered by rows

then columns, and a static value ordering try-

ing 1 then 0

no constraint propagation at all is used in this

prototype: at each search node we simply check

that no constraint has been violated

no constraint programmer would use such a

feeble algorithm!

but this is a prototype SBNO implementation

18

SBNO implementation

local search states: elements of G = Sv × Sb

local moves: elements h of the group generator

H consisting of arbitrary row or column swaps,

restricted to the subset of swaps involving the

matrix entry corresponding to the binary vari-

able v at which the last ≺lex test failed

the restriction makes the neighbourhood sizes

either v or b depending on whether we swap a

row or a column

time to compare rows and columns takes O(b)

or O(v) time respectively

so time to find an improving move if one exists

is O(vb) (linear in # variables)

19

also inspired by conflict-directed heuristics used

in many successful local search algorithms —

focus search effort on the source of failure

in experiments gave better performance than a

more obvious use of the generator of adjacent

(or first-last) row/column swaps

more heuristics

compensate for incompleteness by randomising

g at each local move with probability 1/vb

from each LS state, the possible local moves

h are tested in random order until finding one

that satisfies Ag◦h ≺lex Ag

if none then randomly exchange either v ’s row

or column with the next one (no justification

for this heuristic, and no doubt a better one

can be found)

TABU tenure of 10: no improving move is al-

lowed if it reverses a move made within the

last 10 moves

these heuristics do not affect the correctness

of symmetry breaking, only its efficiency

20

SB overhead

runtime profiling shows that SBNO consumes

over 90% of the total execution time: seems to

contradict our claim that it is a low-overhead

method

but our algorithm currently performs no con-

straint propagation, so the time spent at each

node is very small

time complexity of our constraint checking al-

gorithm at each search node is only O(v) whereas

that of SBNO is O(vb)

but propagation algorithms are typically at least

linear in the number of problem variables, which

is vb in this application

so we expect SBNO overhead to be negligible

when applied to a real constraint solver (to be

tested)

21

performance variation

use of LS for SB makes the DFS runtime and

number of solutions found nondeterministic

10 runs of five different instances:

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06 1e+07 1e+08

so
lu

tio
ns

 fo
un

d

search nodes

(7,7,3,3,1)
(13,13,4,4,1)
(6,20,10,3,4)
(16,20,5,4,1)
(16,16,6,6,2)

little variation in the # search nodes for com-

plete tree search with SB

more variation in # solutions found but this

reduces as the problem hardness increases

harder problems are most interesting so we can

use 1 run per instance

22

comparison with other methods

different researchers use different BIBD instances

to test their algorithms, and we use the same

instances

[Frisch, Hnich, Kiziltan, Miguel, Walsh] for 1-
solution runs using global SB constraints:

GACLexLeqGACLexLeq
v b rk λ adj pairs all pairsDecompSBNO
6 5025310 1.7 1.8 11 1.6
6 6030312 4.6 4.9 45 6.0

10 90273 6 111 120 742 104
9108363 9 8.4 7.6 73 248

15 70143 2 6.2 8.4 21 0.02
12 88223 4 249 317 1154 1333
912040310 8.0 7.2 82 648

10120363 8 1316 1132 — 1227
13104243 4 398 448 1667 328

SBNO not dominated by any of the other meth-

ods on these instances, and is roughly compa-

rable in execution time to the Decomposition

method

23

double-lex [Flener, Frisch, Hnich, Kiziltan, Miguel,
Pearson, Walsh] and GAP-SBDD [Gent, Har-
vey, Kelsey, Linton], all-solution runs:

distinct double-lex GAP-SBDD SBNO
v b rkλ solnssolns time timesolns time
7 7 331 1 1 1.1 0.2 60.004
610 532 1 1 1.0 0.6 40.008
714 632 4 24 11 5.0 55 0.05
912 431 1 8 28 1.9 10 0.02
814 743 4 92 171 66 162 0.3
6201034 4 21 10 56 107 0.2

1111 552 1 19 12 0.08
1313 441 1 42 25 0.2
721 621 1 11 32 0.05

1620 541 1 6078 67 18
1326 631 2 593445694 186

SBNO faster than double-lex but breaks fewer

symmetries

SBNO beats GAP-SBDD in time but does not

break all symmetries, and GAP-SBDD auto-

mates some of the implementation

24

The best known results for many instances are

those of [Puget] and we can’t match them (see

paper for results)

but for a trivial DFS algorithm (without prop-

agation) it does surprisingly well!

next step: implement SBNO in a real CP sys-

tem

further results: we improved the results a lot

by replacing TABU with a memetic algorithm

(to be presented at the CP’08 symmetry work-

shop)

25

conclusion

SBNO is a new partial symmetry breaking method

for CP

related to SBDD but

• using different dominance detection

• solving it by resource-bounded LS instead

of by CP or CGT

• smaller memory requirement

• very low time complexity (should be almost

negligible)

good first results even without propagation

will apply it to other symmetrical problems

26

