
Roberto Rossi

University of Edinburgh

Preliminaries

You should watch these videos.

QR code not marked as above are additional references;
feel free to skip them

https://goo.gl/xBo9Ju

http://www.sarahmei.com/blog/2014/07/15/programming-is-not-math/
https://goo.gl/xBo9Ju

Introduction

https://goo.gl/xBo9Ju

https://goo.gl/xBo9Ju

Topics
• Computer Programming

• Algorithms

• Integrated Development
Environment (IDE)

• Python

• Object-Oriented (OO)
Programming

• Test-driven Development

• Assignments

Topics
• Computer Programming

• Algorithms

• Integrated Development
Environment (IDE)

• Python

• Object-Oriented (OO)
Programming

• Test-driven Development

• Assignments

Topics
• Computer Programming

• Algorithms

• Integrated Development
Environment (IDE)

• Python

• Object-Oriented (OO)
Programming

• Test-driven Development

• Assignments

Algebra. from Arabic al-jabr ‘the reunion of
broken parts’, ‘bone-setting’, from jabara

‘reunite, restore’. The original sense, ‘the surgical
treatment of fractures’, probably came via

Spanish, in which it survives; the mathematical
sense comes from the title of a book, ‘ilm al-jabr
wa'l-muqābala ‘the science of restoring what is

missing and equating like with like’, by the
mathematician al-Ḵwārizmī

Topics
• Computer Programming

• Algorithms

• Integrated Development
Environment (IDE)

• Python

• Object-Oriented (OO)
Programming

• Test-driven Development

• Assignments

Topics
• Computer Programming

• Algorithms

• Integrated Development
Environment (IDE)

• Python

• Object-Oriented (OO)
Programming

• Test-driven Development

• Assignments

Topics
• Computer Programming

• Algorithms

• Integrated Development
Environment (IDE)

• Python

• Object-Oriented (OO)
Programming

• Test-driven Development

• Assignments

class Counter:
 max_count = 500

 def __init__(self):
 self.value = 0

 def increment(self):
 self.value = \
 self.value + 1

 def get_value(self):
 return self.value

Topics
• Computer Programming

• Algorithms

• Integrated Development
Environment (IDE)

• Python

• Object-Oriented (OO)
Programming

• Test-driven Development

• Assignments

Topics
• Computer Programming

• Algorithms

• Integrated Development
Environment (IDE)

• Python

• Object-Oriented (OO)
Programming

• Test-driven Development

• Assignments

Assignments

• Euclid’s Greatest Common
Division (GCD) algorithm

• Bubble Sort

• Eratostene’s Sieve

• Treasure Hunt

• Book Catalogue

Computer
Programming

https://goo.gl/m5YRiR

https://goo.gl/m5YRiR

–Sarah Mei

“Programming is language…”

http://www.sarahmei.com/blog/2014/07/15/programming-is-not-math/

–me

“… and there are zillions of languages out there!”

Programming Paradigms

https://en.wikipedia.org/wiki/Programming_paradigm

Programming Paradigms

Python is a blend of these two styles!

Algorithms

https://goo.gl/NLYk72

https://goo.gl/NLYk72

What is an algorithm?

Are mathematical proofs
“algorithms?”

A two-column proof

https://en.wikipedia.org/wiki/Mathematical_proof

What is an algorithm?

Proofs employ logic but usually
include some amount of natural
language which usually admits

some ambiguity.

In fact, the vast majority of proofs
in written mathematics can be
considered as applications of

rigorous informal logic.

A two-column proof

What is an algorithm?
Algorithms only represent a small

subset of mathematics

 (e.g. Euclidean algorithm for the
greatest common divisor)

To show that an algorithm
“works” one typically has to

produce a (mathematical) proof.

Problem: how do we “prove” that
complex software systems (e.g.

your bank website) work?
A two-column proof

What is an algorithm?

a = [1, 2, 3, 4, 6, 7, 99, 88, 999]
max = 0
for i in a:
 if i > max:
 max = i
print(max)

Algorithm: “Find largest number in a list” pseudocode

Algorithm: “Find largest number in a list” in Python
Flowchart

Ambiguity

more

less

https://en.wikipedia.org/wiki/Algorithm

Integrated Development
Environment (IDE)

https://goo.gl/cwEGFH

https://goo.gl/cwEGFH

Integrated Development
Environment (IDE)

https://www.anaconda.com/download/#macos

Assignment: set up a project folder as shown in

https://goo.gl/cwEGFH

https://goo.gl/cwEGFH

Python

https://goo.gl/ErZZSt

https://goo.gl/ErZZSt

Why Python?
It is “elegant” (for simple codes).

It follows the philosophy of
“batteries included:” a rich
standard library is immediately
available, without making the user
download separate packages.

It allows “rapid prototyping” of
small/medium projects.

You need to write much less
compared to other languages,
e.g. Java, to obtain the same
result.

Why Python?
Java Python

public class HelloWorld
{
 public static void main (String[] args)
 {
 System.out.println("Hello, world!");
 }
}

print(“Hello, World!”)

// print the integers from 1 to 9
public class PrintIntegers{
 public static void main (String[] args)
 {
 for (int i = 1; i < 10; i++)
 {
 System.out.println(i);
 }
 }
}

print(*[x for x in range(11)])

94 characters
21 characters

132 characters

26 characters

—77%

—80%

https://pythonconquerstheuniverse.wordpress.com/2009/10/03/python-java-a-side-by-side-comparison/

Why Python?
Java Python

public class Employee
{
 private String myEmployeeName;
 private int myTaxDeductions = 1;
 private String myMaritalStatus = "single";

 //--------- constructor #1 -------------
 public Employee(String EmployeName)
 {
 this(employeeName, 1);
 }

 //--------- constructor #2 -------------
 public Employee(String EmployeName, int taxDeductions)
 {
 this(employeeName, taxDeductions, "single");
 }

 //--------- constructor #3 -------------
 public Employee(String EmployeName,
 int taxDeductions,
 String maritalStatus)
 {
 this.employeeName = employeeName;
 this.taxDeductions = taxDeductions;
 this.maritalStatus = maritalStatus;
 }
}

class Employee():

 def __init__(self,
 employeeName,
 taxDeductions=1,
 maritalStatus=“single"):

 self.employeeName = employeeName
 self.taxDeductions = taxDeductions
 self.maritalStatus = maritalStatus

545 characters

180 characters

—66%

https://pythonconquerstheuniverse.wordpress.com/2009/10/03/python-java-a-side-by-side-comparison/

Why not to use Python?

Code becomes hard to read
and maintain when complexity of
the project increases.

“Duck typing” (we will see this
later) quickly becomes a problem
as complexity of the project
increases.

Debugging is a complex matter.

What’s the secret then?
Be methodic and organised. If
your code is messy and
inconsistent, it will not work and
you will never find why!

The aim of this lecture is to
provide you with a principled
approach and a toolkit to
achieve consistency while you
are coding.

You will not be a code master in a
few hours, but hopefully you will
be pointed to the right
direction.

https://docs.python.org/3/tutorial/index.html

Hello World

https://goo.gl/sspE29

https://goo.gl/sspE29

Python Packages

Top-level package

https://docs.python.org/3/tutorial/modules.html#packages
https://docs.python-guide.org/writing/structure/

Python Packages

Sub-package

Python Packages

These (empty) files tell python
that modules

can be found in these folders

Python Packages

This is a Python
module

Python Packages

Not a good practice to use the same
name for a package and a module.

Try to avoid this!

Hello World (better)

Function definition

Remember: a function always

returns a value, a procedure never.

This code executes
only if this specific
module is executed

https://docs.python.org/3/tutorial/controlflow.html#defining-functions

Hello World (even better!)

Python Docstring

Python comment

https://docs.python-guide.org/writing/documentation/
https://www.python.org/dev/peps/pep-0257/

Fibonacci series

Remember: a function always

returns a value, a procedure never.

https://docs.python.org/3/tutorial/introduction.html#first-steps-towards-programming

Assignment: develop the Fibonacci module
fibonacci.py in package mathematics

Strings

https://goo.gl/tPoQcg

https://goo.gl/tPoQcg

Strings
strings can be defined as follows
'this is a string' # single quotes
"this is a string" # double quotes

'doesn\'t' # use \' to escape single quote
"doesn't" # or use double quotes instead

'"Yes," they said.' # nested quotes
"\"Yes,\" they said." # or escaped quotes

'First line.\nSecond line.' # \n means newline
r'First line.\nSecond line.’ # r means raw string

'First line.\nSecond line.' # \n means newline
r'First line.\nSecond line.’ # r means raw string

"""String
spanning \
multiple
lines
""" # character \ prevents automatic end of line

"a" + "string" # string concatenation
'Py' 'thon' # automatic concatenation
3 * "a" # string repeat, produces "aaa"

('Put several strings within parentheses ' # use brackets
 'to have them joined together.') # to break long strings

in Python strings are immutable lists of characters
string = 'a string' # create a string
string[0] # returns 'a'
string[0] = 'b' # TypeError: ‘str' object does
 # not support item assignment
len('a string') # returns 8

we will see later on how to manipulate lists

'Total = ' + 3 # TypeError: must be str, not int
str(3) # converts number to string
'Total = ' + str(3) # ok

'Pi = ' + str(3.141592) # number too long?
'Pi = ' + str(round(3.141592,2)) # round to 2 decimals

https://docs.python.org/3/tutorial/introduction.html#strings

Variables & Operators

https://goo.gl/t9jY9C

https://goo.gl/t9jY9C

Variables in Python
Variables are used to store information to be referenced and
manipulated in a computer program.

Unlike other programming languages, Python has no
command for declaring a variable.

A variable is created when you first assign a value to it.

The equal sign (=) is used to assign a value to a variable.

Note: x = 5 really means x ← 5, but unfortunately there is
no sign ← on your keyboard, so we use = for convenience.

https://www.w3schools.com/python/python_variables.asp

Assignment Operators

https://www.programiz.com/python-programming/operators#assignment

Mathematics in Python

https://www.programiz.com/python-programming/operators

Mathematics in Python

https://www.programiz.com/python-programming/operators

Control Structures

https://goo.gl/SNx3n9

https://goo.gl/SNx3n9

Control Structures
Read from standard input
x = int(input("Enter an integer: "))
if x < 0:
 print('Negative')
elif x == 0:
 print('Zero')
else:
 print('Positive')

if

for

Measure some strings:
words = ['cat', 'window', 'defenestrate']
for w in words:
 print(w, len(w))

range(5) := [1, 2, 3, 4, 5]
:= means "is defined as"
for i in range(5):
 print(i)
range(5, 10) := [5, 6, 7, 8, 9]
range(0, 10, 3) := [0, 3, 6, 9]

continue

for num in range(2, 10):
 if num % 2 == 0:
 print("Found an even number", num)
 continue # proceed to the next iteration by ignoring remaining statements
 print("Found a number", num)

for num in range(1, 10):
 if num % 2 == 0:
 print("Found an even number", num)
 break # terminates the loop
 print("Found a number", num)

break pass

def initlog(*args):
 pass # Remember to implement this!

*args means a non-predefined number of
arguments; args[i] is the i-th argument

while

prints "1 2 3 4 5"
a = 0
while a < 5:
 a = a + 1
 print(a, end= ' ' if a < 5 else ‘\n')

https://docs.python.org/3/tutorial/controlflow.html

List and Tuples

https://goo.gl/TTNZhC

https://goo.gl/TTNZhC

Lists & Tuples
create a new list
squares = [1, 4, 9, 16, 25]

List properties
len(squares) # returns the length of the list

List indexing
squares[0] # returns the first item
squares[-1] # first item starting from the end

List slicing
squares[-3:] # "slicing" returns a new list [9, 16, 25]

List concatenation
squares + [36, 49] # returns [1, 4, 9, 16, 25, 39, 49]

List update
squares[0] = 100 # updates list to [100, 4, 9, 16, 25]

Nested lists
a = [1, 2]
b = [3, 4]
c = [a, b]
print(c[0][0]) # prints 1

Traditional list creation
squares = []
for x in range(5):
 squares = squares + [x**2]
print(squares) # prints [0, 1, 4, 9, 16]

List comprehension (we will use this a lot!)
squares = [x**2 for x in range(5)]
print(squares) # prints [0, 1, 4, 9, 16]

Lambda calculus (equivalent, but less elegant)
squares = list(map(lambda x: x**2, range(5)))
print(squares) # prints [0, 1, 4, 9, 16]

Removes first element
del squares[0]

Removes a range
del squares[2:4]

Create a tuple
t = 12345, 54321, 'hello!'

Tuples are immutable:
t[0] = 88888
TypeError: 'tuple' object
does not support item
assignment

but they can contain
mutable objects:
v = ([1, 2, 3], [3, 2, 1])
v[0][0] = 2 # now the tuple
is ([2, 2, 3], [3, 2, 1])

https://docs.python.org/3/tutorial/introduction.html#lists
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

List comprehension

List comprehension is incredibly expressive
[(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
Returns [(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

...and is equivalent to
combs = []
for x in [1,2,3]:
 for y in [3,1,4]:
 if x != y:
 combs.append((x, y))
...which is of course much less effective!

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

Sets and Dictionaries

https://goo.gl/KcLDQE

https://goo.gl/KcLDQE

Sets

Sets (collections that do not allow duplicates)
basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
print(basket) # duplicates have been removed: {'orange', 'banana', 'pear', 'apple'}
'orange' in basket # membership testing: True
'crabgrass' in basket

Demonstrate set operations on unique letters from two words
a = set('abracadabra')
b = set('alacazam')
a # unique letters in a
a - b # letters in a but not in b
a | b # letters in a or b or both
a & b # letters in both a and b
a ^ b # letters in a or b but not both

Set comprehension
{x for x in 'abracadabra' if x not in 'abc'} # returns {'r', 'd'}

https://docs.python.org/3/tutorial/datastructures.html#sets

Dictionaries

Dictionaries
telephone = {'jack': 4098, 'sape': 4139}
telephone['guido'] = 4127 # add entry {'jack': 4098, 'sape': 4139, 'guido': 4127}

telephone['jack'] # 4098
del telephone['sape'] # remove entry{'jack': 4098, 'guido': 4127}

list(telephone) # return ['jack', 'guido']
sorted(telephone) # sort dictionary

'guido' in tel # test membership: True
'guido' not in tel # test membership: False

The dict() constructor builds dictionaries directly from sequences of key-value pairs
dict([('sape', 4139), ('guido', 4127), ('jack', 4098)]) # {'sape': 4139, 'guido': 4127, 'jack': 4098}

Dictionary comprehension
{x: x**2 for x in (2, 4, 6)} # Returns {2: 4, 4: 16, 6: 36}

https://docs.python.org/3/tutorial/datastructures.html#dictionaries

Iterators and
Generators

https://goo.gl/FCf79h

https://goo.gl/FCf79h

Iterators & Generators
Iterators
for element in [1, 2, 3]:
 print(element) # prints 1 2 3

for element in (1, 2, 3):
 print(element) # prints 1 2 3

for key in {'one':1, 'two':2}:
 print(key) # prints one two

for char in "123":
 print(char) # prints 1 2 3

Generators
def return_odd_elements(n): # create a function that returns odd
numbers
 for index in range(n): # iterate from 0 to n-1
 if index % 2 > 0: # if an odd index is found
 yield index # add index to list to be returned

the function returns a collection
print([x for x in return_odd_elements(10)])

https://docs.python.org/3/tutorial/datastructures.html#dictionaries
https://docs.python.org/3/tutorial/classes.html#generators

Functions

https://goo.gl/yDEgHf

https://goo.gl/yDEgHf

Functions
def sample_function(param1, param2):
 '''Docstring
 '''
 pass # an empty function

There are no procedures as such in Python; all functions return some
value. If no return statement is given, function returns None

List of parameters separated by comma.

A Docstring (optional)

4 sp. Body of the function: statements that will be
executed when the function is called.

def sample_function():
 '''This function sets a = 0 and then increments a.
 '''
 a = 0 # a new local variable is created in
 a += 1 # the local symbol table of the function
 b = 3

a = 5 # create a variable a in global symbol table
sample_function()
print(sample_function()) # prints 'None'
print(a) # a is 5
print(b) # NameError: name 'b' is not defined
 # b does not exists outside sample_function

def swap(a):
 '''This function swaps elements in a.
 '''
 a[0], a[1] = a[1], a[0] # typical Python assignment:
 # read all on the right, assign to the left in order

l = [1,2] # create a list in global symbol table
swap(l) # call by value, where value is a reference to the object
print(l) # list a has been swapped

def add_person(pb, name, surname, phone='not set'):
 '''This function adds a person to a phonebook
 '''
 pb[(name, surname)] = phone

phonebook = {} # creates an empty phonebook
add_person(phonebook, 'John', 'Doe', '07823472222') # standard call
add_person(phonebook, 'Foo', 'Bar') # default value used for phone
print(phonebook) # {('Foo', 'Bar'): 'not set',
 # ('John', 'Doe'): '07823472222'}

person = ['John', 'Muir', '07424552345'] # person as a list
add_person(phonebook, *person) # argument unpacking
add_person(phonebook, surname='Mike', name='White') # keyword arguments
person = {'surname': 'Mike',
 ‘name': 'White', 'phone': '07424552345'} # person as a dictionary
add_person(phonebook, **person) # arguments unpacked from dictionary
print(phonebook) # {('John', 'Doe'): '07823472222',
 # ('Foo', 'Bar'): 'not set',
 # ('John', 'Muir'): '07424552345',
 # ('White', 'Mike'): '07424552345'}

def print_table(header, *persons): # Arbitrary Argument Lists
 print(header+'\n---') # print a header
 for p in persons:
 print(p) # print all items in tuple persons

print_table('Name', 'John', 'Mike', 'Mark') # as many names you like

https://docs.python.org/3/tutorial/controlflow.html#defining-functions

Object-Oriented
Programming

https://goo.gl/W4QERH

https://goo.gl/W4QERH

Class

Classes provide a means of bundling data and functionality
together.

Creating a new class creates a new type of object, allowing
new instances of that type to be made.

https://docs.python.org/3/tutorial/classes.html

Class

package

module

class

Classes provide a means of bundling data and functionality
together.

A class defines a new type of object, allowing new instances
of that type to be made.

https://docs.python.org/3/tutorial/classes.html

Class

Each class instance can have attributes attached to it for maintaining its state.

Class attributes belong to the class (and not to individual

instances).

Class instances can also have methods (defined by its class)

for modifying its state.

Visual Studio Code lists
attributes and methods

https://docs.python.org/3/tutorial/classes.html

Class

Software engineers typically use graphical languages (e.g.
UML) to model complex projects involving many classes.

class Counter:
 max_count = 500

 def __init__(self):
 self.value = 0

 def increment(self):
 self.value = \
 self.value + 1

 def get_value(self):
 return self.value

This represents a class List as an aggregation (essentially

a container) of objects of type Counter.

https://www.draw.io/

Class

Instantiation statement c = Counter() creates a new instance of the class and
bind local variable x to this object.

Method __init__(self) is automatically invoked whenever a new instance of
the class is created; this method is employed to initialise the instance.

instantiation

https://docs.python.org/3/tutorial/classes.html

“Assignments do not copy data —
they just bind names to objects”

–Python Tutorial

“Assignments do not copy data — they just bind
names to objects”

class Counter:
 max_count = 500 # class attribute

 def __init__(self):
 self.value = 0 # instance attribute

 def increment(self): # method
 self.value = \
 self.value + 1 # symbol \ can be used to break a line

 def get_value(self): # method
 return self.value

if __name__ == "__main__":
 c1 = Counter() # create a counter and bind to c1
 c2 = c1 # bind the counter to c2 as well
 c1.increment() # increment the counter
 del c1 # unbind c1
 print(c2.get_value()) # the object still exists!
 print(c1.get_value()) # NameError: name 'c1' is not defined

Class vs Instance Attribute

class Counter:
 max_count = 500 # class attribute

 def __init__(self, initial_value):
 self.value = initial_value # initialise counter

 def increment(self): # method
 self.value = \
 self.value + 1 # symbol \ can be used to break a line

 def get_value(self): # method
 return self.value

if __name__ == "__main__":
 c = Counter(5) # create a counter initialised to 5
 c.max_count = 10 # create a new instance attribute max_count
 print(c.max_count) # print instance attribute; returns 10
 print(Counter.max_count) # print class attribute; returns 100

ADVANCED

https://docs.python.org/3/tutorial/classes.html#class-and-instance-variables

Class vs Static Methods
import math # Import system library

class Counter:
 max_count = 500 # class attribute

 def __init__(self, initial_value):
 self.value = initial_value # initialise counter

 def increment(self): # method
 self.value = \
 self.value + 1 # symbol \ can be used to break a line

 def get_value(self): # method
 return self.value

 @classmethod
 def set_max_count(cls, max):
 cls.max_count = max

 @staticmethod
 def square_root(n):
 return math.sqrt(n) # static method to compute sqrt

if __name__ == "__main__":
 print(Counter.max_count) # print class attribute
 Counter.set_max_count(10) # modify class attribute
 print(Counter.max_count) # print class attribute
 print(Counter.square_root(36)) # use static method

ADVANCED

https://realpython.com/instance-class-and-static-methods-demystified/

Inheritance
import math

class Counter:
 max_count = 500 # class attribute

 def __init__(self, initial_value):
 self.value = initial_value # initialise counter

 def increment(self): # method
 self.value = \
 self.value + 1 # symbol \ can be used to break a line

 def get_value(self): # method
 return self.value

class CounterPlus(Counter):
 # CounterPlus "inherits" all attributes and methods of Counter
 def decrement(self): # new method
 self.value = \
 self.value - 1 # symbol \ can be used to break a line

if __name__ == "__main__":
 cp = CounterPlus(5) # create a CounterPlus
 cp.increment() # a CounterPlus inherits method increment from Counter
 cp.decrement()
 print(cp.get_value()) # a CounterPlus inherits method get_value from Counter

 c = Counter(5) # create a Counter
 c.decrement() # AttributeError: 'Counter' object has no attribute 'decrement'

ADVANCED

https://docs.python.org/3/tutorial/classes.html#inheritance

Why do I need to know
about OO?

if __name__ == "__main__":
 a = [] # create a list
 print(a) # []
 a.append(1) # append an element
 print(a) # [1]
 a.append(2) # append an element
 print(a) # [1, 2]
 a.remove(2) # remove first occurrence of 2
 print(a) # [1] it turns out lists are objects too!

In fact, most of the standard modules you will end up using will be OO…

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

Errors and Exceptions

https://goo.gl/Mr7oeE

https://goo.gl/Mr7oeE

Errors and Exceptions
In Python there are (at least) two distinguishable kinds of errors:

syntax errors and exceptions.

while True print('Hello world') # syntax error (colon missing)

while True: print('Hello world') # ok

Even if a statement or expression is syntactically
correct, it may cause an error when an attempt is

made to execute it.

Errors detected during execution are called
exceptions and are not unconditionally fatal.

You must learn how to handle them in Python
programs.

https://docs.python.org/3/tutorial/errors.html

Errors and Exceptions
10 * (1/0) # ZeroDivisionError: division by zero
4 + spam*3 # NameError: name 'spam' is not defined
‘2' + 2 # TypeError: must be str, not int

Exceptions come in different types, and the type is printed as
part of the message: the types in the example are

ZeroDivisionError, NameError and TypeError.

try:
 x = int(input("Please enter a number: ")) # tries to convert from standard input to int
except ValueError: # catches ValueError if not int
 print("Oops! That was no valid number. Try again...")
except Exception as err:
 print("Name error: {0}".format(err)) # formatted print for a generic exception
 # other than ValueError
else: # (optional) executes if no exception raised
 print("Number entered: " + str(x))
finally: # (optional) executes under all circumstances
 print("Always printed.")

Handling Exceptions

Errors and Exceptions
10 * (1/0) # ZeroDivisionError: division by zero
4 + spam*3 # NameError: name 'spam' is not defined
‘2' + 2 # TypeError: must be str, not int

Exceptions come in different types, and the type is printed as
part of the message: the types in the example are

ZeroDivisionError, NameError and TypeError.

class NewException(Exception): # user defined exception
 pass

if __name__ == "__main__":
 try:
 raise NameError(‘An error has occurred’) # raise NameError
 except NameError as err: # catches NameError
 print("Name error: {0}".format(err)) # formatted print

Raising Exceptions

Errors and Exceptions
Fibonacci Series

def fibonacci(n):
 '''This procedure prints the first n Fibonacci series elements
 '''
 if not(isinstance(n, int)): # tests if n is integer
 raise Exception('Fibonacci takes only integer values.')

 a, b = 0, 1
 while a < n:
 print(a)
 a, b = b, a+b

if __name__ == "__main__":
 fibonacci(5.5) # Print the first five Fibonacci series elements

line 5, in fibonacci raise Exception('Fibonacci takes only integer values.')
Exception: Fibonacci takes only integer values.

Output

–Robert (Bob) Ross

“There are no mistakes, only happy little accidents.”
errors exceptions

–Roberto Rossi

Duck Typing

https://goo.gl/9hsAzu

https://goo.gl/9hsAzu

“If it walks like a duck and it quacks like a duck, then
it must be a duck (or a rabbit?)”

Duck Typing

https://hackernoon.com/python-duck-typing-or-automatic-interfaces-73988ec9037f

Duck Typing
class Duck():
 def quack(self):
 return 'Duck Quack!'

class Goose():
 def quack(self):
 return 'Goose Quack!'

class Dog():
 pass

Generators
def animals_who_quack(animals):
 for a in animals:
 try:
 yield a.quack() # duck typing (i.e. try and see if it works)
 except AttributeError: # be type agnostic: use duck typing and exceptions
 pass

if __name__ == "__main__":
 duck = Duck()
 goose = Goose()
 dog = Dog()
 animals = [duck, goose, dog]
 print([x for x in animals_who_quack(animals)]) # you don't need to know what animal you are dealing with

Test-driven
Development

https://goo.gl/KP9k3P

https://goo.gl/KP9k3P

#testdrivendevelopment

“Where shall I begin, please your Majesty?” he asked.
“Begin at the end,” the King said gravely,

“and go on till you come to the beginning: then stop.”

First write the test procedures (“begin at the end”)…

import our counter_module
and define an alias cm

… and then implement relevant classes/methods (“walk your way back!”).

Regularly verify that your code passes all tests!

Extras

Reading and Writing Files

with open('workfile.txt', 'w') as f: # predefined Clean-up Actions (see python tutorial)
 f.write('This is a test\n')
print(f.closed)

with open('workfile.txt') as f:
 read_data = f.read() # alternatively f.readline() reads a single line from the file
 print(read_data)
print(f.closed)

https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files

Handling Input Arguments
import sys # Import system library

def hello_msg():
 '''This procedure prints an information message including:
 the name of the script;
 the number of arguments passed to the script;
 the value of these arguments.
 '''

 print("This is the name of the script: ", sys.argv[0])
 print("Number of arguments: ", len(sys.argv))
 print("The arguments are: " , str(sys.argv))

if __name__ == "__main__":
 hello_msg() # Print an information message

$ python arguments.py "first argument"
This is the name of the script: arguments.py
Number of arguments: 2
The arguments are: ['arguments.py', 'first argument']
$

Terminal

https://docs.python.org/3/tutorial/stdlib.html#command-line-arguments

Coding Style
• Use 4-space indentation, and no tabs. 4 spaces are a good

compromise between small indentation (allows greater nesting depth)
and large indentation (easier to read). Tabs introduce confusion, and are
best left out.

• Wrap lines so that they don’t exceed 79 characters. This helps users
with small displays and makes it possible to have several code files
side-by-side on larger displays.

• Use blank lines to separate functions and classes, and larger
blocks of code inside functions.

• When possible, put comments on a line of their own.

• Use docstrings.

https://docs.python.org/3/tutorial/controlflow.html#intermezzo-coding-style

Coding Style
• Use spaces around operators and after commas, but not inside

bracketing constructs: a = f(1, 2) + g(3, 4).

• Name your classes and functions consistently; the convention is to
use CamelCase for classes and lower_case_with_underscores for
functions and methods. Always use self as the name for the first
method argument.

• Don’t use fancy encodings if your code is meant to be used in
international environments. Python’s default, UTF-8, or even plain
ASCII work best in any case.

• Likewise, don’t use non-ASCII characters in identifiers if there is
only the slightest chance people speaking a different language will read
or maintain the code.

Assignments

Euclid’s GCD Algorithm
• Develop a Python implementation of Euclid’s GCD

algorithm. Use a test-driven development approach!

…of course there are plenty of Python implementations on line,
but try to come up with your implementation!

When two unequal numbers are set out, and the
less is continually subtracted in turn from the
greater, if the number which is left never
measures the one before it until a unit is left,
then the original numbers are relatively prime.

Euclid's Elements, Book VII, Proposition 1

Euclid's Elements, Book VII, Proposition 1,
by Isaac Barrow, Master of Trinity College, Cambridge

A fragment of Euclid's Elements on part of the Oxyrhynchus papyri

Pseudocode implementation

The algorithm can be expressed as:

https://goo.gl/wwQz5A

https://en.wikipedia.org/wiki/Euclidean_algorithm
http://www.macs.hw.ac.uk/~markl/teaching/CODES/L5.pdf
https://goo.gl/wwQz5A

Bubble Sort Algorithm
• Develop a Python implementation of the Bubble Sort

algorithm. Use a test-driven development approach!

…of course there are plenty of Python implementations on line,
but try to come up with your implementation!

Static visualisation
of bubble sort

https://goo.gl/r828xJ

https://en.wikipedia.org/wiki/Bubble_sort
https://goo.gl/r828xJ

Eratostene’s Sieve
• Develop a Python implementation of Eratostene’s sieve.

Use a test-driven development approach!

…of course there are plenty of Python implementations on line,
but try to come up with your implementation!

Prime numbers up to 100

https://goo.gl/KAiXUN

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://goo.gl/KAiXUN

Treasure Hunt
• Develop an OO code to navigate the following maze and

play the game described below.

The player starts in cell A and can move in the directions indicated.

The game ends when the player reaches the treasure room G,

or ends in room F and dies.

I don’t think you will find this one online… ^_^

A B

C D

E F

G

south

north

east

east

east

north
west

north

treasure room!

start no way back!

Book Catalogue
• Goodreads is an app that maintains three lists: books you

have read; books you are reading; and books you want to
read.

• Develop an OO code as close as possible to Goodreads:
ideally you should be able to insert/remove items into any
of the three lists and print any of the lists. Once more, use
test-driven development.

https://www.goodreads.com/

The Zen of Python
Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

Tim Peters

https://www.python.org/dev/peps/pep-0020/

References
My favourite YouTube Python Course:

https://goo.gl/SFPPw6

https://goo.gl/SFPPw6

© Roberto Rossi, 2018

University of Edinburgh

