™

@ python

Roberto Rossi
University of Edinburgh

Preliminaries

OpLO

You should watch these videos.

https://goo.gl/xBo9Ju

QR code not marked as above are additional references;
feel free to skip them

http://www.sarahmei.com/blog/2014/07/15/programming-is-not-math/
https://goo.gl/xBo9Ju

Introduction

8]z [a]
[=]e

https://g00.gl/xBo9Ju

https://goo.gl/xBo9Ju

Topics

Computer Programming
Algorithms

Integrated Development
Environment (IDE)

Python

Object-Oriented (OO)
Programming

Test-driven Development

Assignments

Topics

Computer Programming
Algorithms

Integrated Development
Environment (IDE)

Python

Object-Oriented (OO)
Programming

Test-driven Development

Assignments

Topics

Computer Programming
Algorithms

Integrated Development
Environment (IDE)

Python

Object-Oriented (OO)
Programming

Test-driven Development

Assignments

MMIOLI&;,&).’M)&.:
5 I et ol el §
Soelplersstrleg oA b | .

rezkx:;*/__,{;w—»
J-vf‘/ I

A -
a4 -Lommd | 1}
h’ s R

Algebra. from Arabic al-jabr ‘the reunion of
broken parts’, ‘bone-setting’, from jabara

‘reunite, restore’. The original sense, ‘the surgical

treatment of fractures’, probably came via
Spanish, in which it survives; the mathematical
sense comes from the title of a book, ‘ilm al-jabr
wa'l-muqgabala ‘the science of restoring what is
missing and equating like with like’, by the
mathematician al-Kwarizmi

Top

Computer Programming
Algorithms

Integrated Development
Environment (IDE

Python

Object-Oriented (OO
Programming

Test-driven Development

Assignments

ICS

A Home

@ Environments
J .

W Learning

an Community

Documentation
Developer Blog

Feedback

Welcome X

{D ANACONDA NAVIGATOR

Applications on base (root) v| = Channels

]

jupyterlab

An extensible environment for interactive
and reproducible computing, based on the
Jupyter Notebook and Architecture.

o
>G

vscode

1.27.2

Streamlined code editor with support for
development operations like debugging,
task running and version control.

Visual Studio Code

Editing evolved

Start

Recent

@ Show welcome page on startup

-
Jupyter
L]
notebook
5.4.1

Web-based, interactive computing notebook
environment. Edit and run human-readable
docs while describing the data analysis.

=

glueviz

0.12.4

Multidimensional data visualization across
files. Explore relationships within and among
related datasets.

=]

ython

qtconsole
431
PyQt GUI that supports inline figures, proper

multiline editing with syntax highlighting,
graphical calltips, and more.

=

G

orange3

3110

Component based data mining framework.
Data visualization and data analysis for
novice and expert. Interactive workflows
with a large toolbox.

=]

Customize

Tools and languages
Install sup

Settings and keybindings

Install th nd keyboard sho

Color theme

e the editor and y

Learn

Find and run all commands

Interactive playground
Tr ial ed f

spyder

328

Scientific PYthon Development
EnviRonment. Powerful Python IDE with
advanced editing, interactive testing,
debugging and introspection features

Ald

rstudio

1.1.423

Aset of integrated tools designed to help
you be more productive with R. Includes R
essentials and notebooks.

B

Refresh

Topics

Python Software Foundation [US] python.org

Computer Programming
Algorithms

Integrated Development
Environment (IDE)

Python

Object-Oriented (OO)
Programming

Test-driven Development

Assignments

Python

e python’

itk B Maven B3 Java B9 Python B Amalytics

“— - 8 Python Software Foundation [US] | docs.python.org/3

— -~

L ADDS [_: GitMub ;1 M

® Python» tegish B 370

Download

Download these documents

Docs for other
versions

Python 3.8 (in
development)

Python 3.6 (stable)

Python 3.5 (security-fixes)
Python 2.7 (stable)

Old versions

Other resources

PEP Index
Beginner's Guide
Book List
Audio/Visual Talks

ver Lj Java

-

B9 Python BB Analytics B9 Deeplearning

B Documentation »

Python 3.7.0 documentation

Welcome! This is the documentation for Python 3.7.0.

Parts of the documentation:

What's new in Python 3.77

or all "What's new” documents since 2.0

Tutorial
start here

Library Reference
keep this under your pillow

Language Reference
describes syntax and language elements

Python Setup and Usage

how to use Python on different platforms

Python HOWTOs

in-depth documents on specific topics

Installi
installing
sources

Distrib
publishin

Extend
tutorial fe

Python

reference

FAQs

frequenth

Topics

Computer Programming

Counter

+ value: int

Algorithms + max_count: int

+ increment(): void

Integrated Development + get_value(): int
Environment (IDE)

| ciass Counter:
F))ftr]()r] : max_count = 500

def __init_ (self):

self.value = 0

Object-Oriented (OO)

Programming e
self.value + 1
Test-driven Development | def get_value(self):

return self.value ;

Assignments

Topics

Computer Programming
Algorithms

Integrated Development
Environment (IDE)

Python

Object-Oriented (OO)
Programming

Test-driven Development

Assignments

import unittest
import counter_package.counter_module as cm

Run Test

R

" -~

- b ~ ~ot

D I_. [L‘ [.: ' '._. - L
-

~lass TestCounter{unittest.TestCase):

def setUp(self):
self.c = cm.Counter()

def tearDown(self):
Dass

v Run Test | v Debug Test

def testCounter(self):
self.c.increment()
self.assertEqual(self.c.get_value(), 1)

Topics

Computer Programming
Algorithms

Integrated Development
Environment (IDE)

Python

Object-Oriented (OO)
Programming

Test-driven Development

Assignments

Assignments

Euclid’s Greatest Common
Division (GCD) algorithm

Bubble Sort
Eratostene’s Sieve
Treasure Hunt

Book Catalogue

Computer

Programming
o
a5

https://goo.gl/m5YRIR

https://goo.gl/m5YRiR

“Programming is language...”

-Sarah Mei

http://www.sarahmei.com/blog/2014/07/15/programming-is-not-math/

“... and there are zillions of languages out there!”

Programming Paradigms

Non-structured (contrast: Structured)

Programming paradigms ¢ Dynamicrscripting
e Event-driven e Array

Nondeterministic
Parallel computing

e Action
e Agent-oriented

e Service-oriented
e Time-driven
e Function-level (contrast: Value-level) e Process-oriented
Probabilistic
Stack-based

Structured (contrast: Non-structured)

e Array-oriented
e Automata-based

e Concurrent computing * Point-free style
o Concatenative

e Relativistic programming

e Data-driven e Generic
e Declarative (contrast: Imperative) * Imperative (contrast: Declarative) e Block-structured
Functional ¢ Procedural e Modular (contrast: Monolithic)
e Functiona | .
e Object-oriented * Object-oriented

¢ Functional logic
¢ Purely functional
e Logic

e Literate e Actor-based

Class-based

e Concurrent
Prototype-based

o By separation of concerns:

e Language-oriented
e Natural-language programming
e Discipline-specific
¢ Domain-specific

¢ Abductive logic
e Answer set
e Concurrent logic

-Ori e Aspect-oriented
e Functional logic ¢ Grammar-oriented .
¢ |Inductive logic * Intentional Sl e
. 9 e Metaprogramming e Subject-oriented
e Constraint —
« Constraint logic * Automatic . Symbolic

¢ Inductive programming

) e i e Value-level (contrast: Function-level)
Dataflo e Reflective .
T , : e Quantum programming
e Attribute-oriented
e Flow-based ou
e Cell-oriented (spreadsheets) Homoiconic
e Macro

e Heactive

Template

https://en.wikipedia.org/wiki/Programming_paradigm

Programming Paradigms

Non-structured (contrast: Structured)

Programming paradigms e Dynamic/scripting
e Event-driven e Array

Nondeterministic
Parallel computing

e Action
e Agent-oriented

e Service-oriented
e Time-driven

e Array-oriented

e Function-level (contrast: Value-level) e Process-oriented
e Automata-based Probabilisti
. int- robabilistic
e Concurrent computing * Point-free style ’ e
« ck-base

e Relativistic programming « Concatenative

Structured (contrast: Non-structured)

e Data-driven e Generic
e Declarative (contrast: Imperative) * Imperative (contrast: Declarative) * Block-structured
Functional e Procedural e Modular (contrast: Monolithic)
o Obi iented ¢ Object-oriented
« Functional logic * Object-orient
e Purely functional * Literate e Actor-based
e Language-oriented » Class-based

Loqic
* o8 e Concurrent

Prototype-based
o By separation of concerns:

e Natural-language programming
e Discipline-specific
e Domain-specific

e Abductive logic
e Answer set
e Concurrent logic

-ori e Aspect-oriented
e Functional logic ¢ Grammar-oriented _
« Inductive logic e Intentional et
. v e Metaprogramming e Subject-oriented
e Constraint B ——
« Constraint logic * Automatic . Symbolic

¢ Inductive programming

e Concurrent constraint logic . e Value-level (contrast: Function-level)
¢ Reflective

e Dataflow e Quantum programming
¢ Attribute-oriented
o Flow-based

e Cell-oriented (spreadsheets) e Homoiconic

+ Reaciive e Python is a blend of these two styles!

Algorithms

3

[m]ky

https://goo.gl/NLYk72

https://goo.gl/NLYk72

What is an algorithm?

Are mathematical proofs
“algorithms?”

&3

Prorosimioy XIX., Turokem
106. // two parallel lines are cul by a transversal,
the ('nrl't'.*/Nnull'uf/ Il/:f//r.\‘ are ¢ f/:uu’.

|Converse of 'rop. X1V,]

4

kil

Given });U';xllvl lines 48 and ¢ and the cor. & 1 and 2.

l= L 2.

To prove

Proof

REASONS

BTATEMENTS
4./. 1 - ‘: .\. \"'Hn‘l‘. 2 are c'~‘|..\l

AlL Int. A4 of U lines are equal,

2=/ 3
L 'l‘lsil‘,~ ~-‘ll|t| 1o Lthe same l!c“l'."

< ‘__/. B £ e
are rnlnl.ti L i l\ '-H.l'l

Q. E.D.

A two-column proof

https://en.wikipedia.org/wiki/Mathematical_proof

Proofs employ logic but usually

include some amount of natural

language which usually admits
some ambiguity.

In fact, the vast majority of proofs
iIn written mathematics can be
considered as applications of

rigorous informal logic.

What is an algorithm?

Prorosimioy XIX. Turoxkem

106. l/ [100 /Nll'(lNc[11.)“.\' are cul 1'11/ (i ”"l)l‘\l'(‘l'nll/,

- . ’
the ('nrrc'x/»um/uu/ /l/u/[o § are equal.

[(‘mwenw of l'l’u|t. X1Y.]

Gtven });\!'.t::('l lines 44 wund D and the cor, & 1 and 2.

To prove L1l=m L2,
l)r(‘(t
STATEMENTS REASONS
‘/_ 1 == L 3. Yertucal 4 are cn‘l.,\l
7 ', - AlL Int. & of 1 lines are equal,

'l‘lsil s 'l“lll.l 1o the same l!a‘.hh'

2D Are squal o e h oLther
W P .

A two-column proof

What is an algorithm?

AlgOrltth Only represent d Sma" Prorosimiony XIX. Trroxkewm
106. IS two parallel lines are cul by a transversal,

subset of mathematics the corresponding angles are equal.

[(‘mwenw of l'l’u|t. X1Y.]

(e.g. Euclidean algorithm for the ‘/E
greatest common divisor) . i /

To show that an algorithm : /
*works” one typically has to *
" Given parallel lmmes 48 and D and the cor, & | and 2.
produce a (mathematical) proof. s A

STATEMENTS REASONS

Problem: how do we “prove” that e 29 Vertesl i 10 oyiel

! P 5. Al Int. A of 1 Hnes arv equal,

complex software systems (e.qg. - A i S o o4
your bank website) work? o pp. | a7 squal t cach othe

A two-column proof

In a List of Numbers

largest = a[0]

Yes

v

largest = a[i]

4

Does
1= N?

g

Is a[i] =
largest?

,,NO

=i+ 1

Flowchart

Numbers are in an array:
a[0], a[1], ... a[N-1]

more

What is an algorithm?

Finding the Largest Number

Algorithm LargestNumber
Input: A list of numbers L.
Output: The largest number in the list L.

if L.size = 0 return null
largest « L[0]
for each item in L, do
if item > largest, then
largest + 1item
return largest

o "«"denotes assignment. For instance, "largest + item" means that the value of largest changes to the value of item.

¢ "return” terminates the algorithm and outputs the following value.

Algorithm: “Find largest number in a list” pseudocode

[1, 2, 3, 4, 6, 7, 99, 88, 999]
" max =

. for 1 in a:

if 1 > max:
max =
, print(max)

Algorithm: “Find largest number in a list” in Python

https://en.wikipedia.org/wiki/Algorithm

Integrated Development
Environment (IDE)

[m] 75! [m]
[m]

https://goo.gl/cwEGFH

https://goo.gl/cwEGFH

Integrated Development
Environment (IDE)

Welcome X

Visual Studio Code

Editing evolved

Start Customize

Tools and languages
Install support for JavaScript, TypeScript, Python,

Settings and keybindings
Recent Install the settings and keyboard shortcuts of V

V ~/Desktop/Inventory Analytics/python
~[PythonWorkspace
~fPythonWorkspace
~[Desktop/Inventory Analytics/eclipse

Color theme
Make the editor and your code look the way you love

(“R)

Learn

Find and run all commands
Rapidly access and search commands from the Command Palette ({*38P)

Interface overview
Get a visual overlay highlighting the major components of the U

Interactive playground

Try essential editor features out in a short walkthrough
® Show welcome page on startup

https://www.anaconda.com/download/#macos

Assignment: set up a project folder as shown in

OO

https://goo.gl/cwEGFH

https://goo.gl/cwEGFH

Python

3

[=]Ly

https://goo.gl/ErZZSt

https://goo.gl/ErZZSt

Why Python?

It is “elegant” (for simple codes).

It follows the philosophy of
“batteries included:” a rich
standard library is immediately
available, without making the user
download separate packages.

It allows “rapid prototyping” of
small/medium projects.

You need to write much less
compared to other languages,
e.g. Java, to obtain the same
result.

e 1»» . \’//, /
/ — \' S

THE BEAUTY OF SIMPLICITY

- w7 /=7 A b Y 4 e 'y /4 Ny y_
S / (2 Yy v Vs py »
| y &t & B Y Ve & V4 4 2
u ;.,,v‘ " . 7 g y: . P = .
“'\-\ _— &
~—— F &
m') ’
y
v 4
-

IAN GLYNN

‘Erudite . . ;an clcgnnt volume indeed.

SERGE DAAN, Nature

Why Python?

Java Python

, public class HelloWorld
t {

public static void main (Stringl[] args)

{

System.out.println("Hello, world!");

)

21 characters
94 characters

" public class PrintIntegers{
' public static void main (String[] args)
{
for (int 1 =1; i < 10; i++)

{

System.out.println(i); 26 characters

132 characters

https://pythonconquerstheuniverse.wordpress.com/2009/10/03/python-java-a-side-by-side-comparison/

Why Python?

Java Python

= s - J S

public class Employee
£
J private String myEmployeeName;
private int myTaxDeductions
private String myMaritalStatus

public Employee(String EmployeName)
{

=

- class Employee():

this(employeeName, 1);

def __init__ (self,
emp loyeeName,
taxDeductions=1,

public Employee(String EmployeName, int taxDeductions) , ,
maritalStatus=“single"):

{

this(employeeName, taxDeductions, "single");

self.employeeName emp LoyeeName
self.taxDeductions taxDeductions
self.maritalStatus maritalStatus

public Employee(String EmployeName, 180 characters
int taxDeductions,

String maritalStatus)

this.employeeName emp lLoyeeName;
this.taxDeductions taxDeductions;
this.maritalStatus maritalStatus;

e

545 characters

https://pythonconquerstheuniverse.wordpress.com/2009/10/03/python-java-a-side-by-side-comparison/

Why not to use Python?

e 1»» . \’//, /
| - \' S

THE BEAUTY OF SIMPLICITY

Code becomes hard to read
and maintain when complexity of \ Jlegarice
the project increases. ¢~ / SCIENCE

“Duck typing” (we will see this
later) quickly becomes a problem
as complexity of the project
INncreases.

Debugging is a complex matter.
IAN GLYNN

‘Erudite . . ;an clcgnnt volume indeed.

SERGE DAAN, Nature

What’s the secret then?

Be methodic and organised. If
your code Is messy and
inconsistent, it will not work and
you will never find why!

The aim of this lecture is to
provide you with a principled
approach and a toolkit to
achieve consistency while you
are coding.

You will not be a code master in a
few hours, but hopefully you will
be pointed to the right
direction.

® Python» tregish B 370 & Documentation

Download

Python 3.7.0 documentation

Download these documents

Welcome! This is the documentation for Python 3.7.0,
Docs for other

versions
Python 3.8 (in
development)

Python 3.6 (stable) What's new in Python 3.77
Python 3.5 (security-fixes) . e manas® alo e s

Parts of the documentation:

Python 2.7 (stable) or all "'What's new curments since 2.0 Installi
Old versions installing
Tutorial sources
Other resources . start here

Distrib
PEP Index . ,)
Beginner’s Cuide Library Reference publishin
Book List keep this under your pillow
Audio/Visual Talks txtend

Language Reference

describes syntax and language elemer i

i
Python Setup and Usage E E
how to use Python on different platfor =

Python HOWTOs

in-depth documents on specific topics

https://docs.python.org/3/tutorial/index.html

Hello Wor

00
@ EXPLORER @ hello_world.py X

4 OPEN EDITORS 1 print|/("Hello World"))

/O X @ hello_world.py hello_world
4 PYTHON

? b .vscode
4 hello_world
@ _init__.py

@ hello_world.py

P __init__.py

https://goo.gl/sspE29

https://goo.gl/sspE29

Python Pac

@ EXPLORER @ hello_world.py X
4 OPEN EDITORS 1 print|("Hello World")
p X @ hello_world.py hello_world
4 PYTHON <—
b .vscode
4 hello_world
» __Init__.py
hello_world.py
» __init__.py

Top-level package

A Date Modified

_init__.py Today at 17:31

| hello_world Today at 20:3

https://docs.python.org/3/tutorial/modules.html#packages
https://docs.python-guide.org/writing/structure/

Python Packages

00
@ EXPLORER @ hello_world.py X

4 OPEN EDITORS 1 print:(:"Her ‘n’orld“:):

p X @ hello_world.py hello_world
4 PYTHON

b .vscode

4 hello_world <
- _Inlt_py \\

@ hello_world.py Bl
@ __init__.py

Python Packages

@ EXPLORER @ hello_world.py X

4 OPEN EDITORS 1 print("Hello World"))
p X @ hello_world.py hello_world

4 PYTHON

b .vscode

4 hello_world

& _init_py & These (empty) files tell python

Y [y e DYM that modules
L | //:;n be found In these folders
@ _init_py &

Python Pac

00
@ EXPLORER @ hello_world.py X

4 OPEN EDITORS 1 print:(:"Her ‘n’orld“:):

p X @ hello_world.py hello_world
4 PYTHON
b .vscode
4 hello_world
@ _init__.py This is a Python

» hello_world.py M module

@ __init__.py

Python Packages

00
@ EXPLORER @ hello_world.py X

4 OPEN EDITORS 1 print|/("Hello World"))

/O X @ hello_world.py hello_world
4 PYTHON

b .vscode
? 4 hello_world M
@ _init__.py

hello_world.py W

» __init__.py

Hello World (better)

EXPLORER

4 OPEN EDITORS
X @ hello_world.py hello_world
4 PYTHON

b .vscode

4 hello_world

» __init__.py
» hello_world.py

» __init__.py
4 QUTLINE

Filter

% hello_msg

» hello_world.py X

lef hello_msg(): <
return "Hello World" \ Function definition

if _name__ == "__main__": ¢ _
\ This code executes

print/(hello_msg()))

only if this specific
module is executed
Remember: a function always
returns a value, a procedure never.

https://docs.python.org/3/tutorial/controlflow.html#defining-functions

Hello World (even better!)

o oo
@ EXPLORER @ hello_world.py X

4 OPEN EDITORS def hello_msg():
p X @ hello_world.py hello_world This function returns a "Hello World" message
4
ALl Returns:

%9 b .vscode str — a "Hello World" message

4 hello_world <
@ __init__.py \ Python Docstring

return "Hello World"
@ hello_world.py |

» __init__.py if _name_ == "_main_ ":
print(hello_msg())

4 OUTLINE

Filter
Python comment

% hello_msg

https://docs.python-guide.org/writing/documentation/
https://www.python.org/dev/peps/pep-0257/

Fibonaccl series

00
@ EXPLORER @ fibonacci.py X

4 OPEN EDITORS def fibonacci(n):
p X @ fibonacci.py mathematics ""'This procedure prints the first n Fibonaccl series elements

4 INTRO_TO_PYTHON (WORKSPACE) a. b=20. 1
’ - ’

? 4 python while a < n:

b .vscode print(a)

b counter_package a, b =>b, a+b

> hello_world

_ it _name___ = "__main__":
mathematics fibonacci(5)

» __init__.py

» fibonacci.py

» __iInit__.py

Remember: a function always
returns a value, a procedure never.

https://docs.python.org/3/tutorial/introduction.html#first-steps-towards-programming

Assignment: develop the Fibonacci module
fibonacci.py In package mathematics

Strings

% S

https://goo.gl/tPoQcg /’

https://goo.gl/tPoQcg

a" + "string"

F 'this is a string’ f ¢ 'Py' 'thon'

- "this is a string" F 3 x "a"

‘doesn\'t’ ' ('Put several strings within parentheses
*‘“doesn't“ | « 'to have them joined together.'

‘"Yes," they said.'
PN\ they said.” f : string = 'a string’
ST Sm—— o o | ' string[0]

S il . string[0] = 'b'
'"First line.\nSecond line.'

'First line.\nSecond line.’ ! len('a string')

'"First line.\nSecond line.'
'"First line.\nSecond line.’

Y IIIIIIS.tr.:i-r.]g
' spanning

multiple - SR e
. lines ; ' + str(3.141592)
AL + str(round(3.141592,2))

https://docs.python.org/3/tutorial/introduction.html#strings

Variables & Operators

EIEE_I
[m] o | . .. /\

https://g00.9l/t9jY9C s

https://goo.gl/t9jY9C

Variables in Python

Variables are used to store information to be referenced and
manipulated in a computer program.

Unlike other programming languages, Python has no
command for declaring a variable. Bz [e]

[=]pr
A variable is created when you first assign a value to |it.

The equal sign (=) is used to assign a value to a variable.

Note: x = 5 really means x « 5, but unfortunately there is
No sign < on your keyboard, so we use = for convenience.

https://www.w3schools.com/python/python_variables.asp

Assignment Operators

Assignment operators in Python

Operator Example Equivatent to
= X =5 X =5

= X += § X=X+5
= X -=5 X=X-5
*= X *= 5 X=X%5
/= X /=5 X=Xx/5
%= X %= 5 X=X5%5
/= X //=5 X=x1/I5
Jek — x *k= § x = x ** §
&= X &= 5 X=X &5
|= X |=5 X=X1|5
A= X A= 5 X =xMN5
>>= X >>= § X =X >>5§

<<= X <<= § X =X << §

https://www.programiz.com/python-programming/operators#assignment

Mathematics in Python

Operator

%

/!

* %

Arithmetic operators in Python

Meaning

Add two operands or unary plus

Subtract right operand from the left or unary minus

Multiply two operands

Divide left operand by the right one (always results into float)

Modulus - remainder of the division of left operand by the
right

Floor division - division that results into whole number
adjusted to the left in the number line

Exponent - |left operand raised to the power of right

Example

X+Yy

X %y
(remainder of
X/y)

X /1y

X**y (x to the
power y)

https://www.programiz.com/python-programming/operators

Mathematics in Python

Comparision operators in Python

Operator Meaning Example
> Greater that - True if left operand is greater than the right X >y
< Less that - True if left operand is less than the right X <Yy
== Equal to - True if both operands are equal X ==Y
= Not equal to - True if operands are not equal X 1=y
o Greater than Qr equal to - True if left operand is greater than or X >=y
equal to the right
o Less Fhan or equal to - True if left operand is less than or equal to X <=y
the right
Logical operators in Python
Operator Meaning Example
and True if both the operands are true X and vy
or True if either of the operands is true X Ory
not True if operand is false (complements the operand) not x

https://www.programiz.com/python-programming/operators

Control Structures

O
[=]hy

https://g00.9l/SNx3n9 |

https://goo.gl/SNx3n9

Control Structures

X = int(input("Enter an integer: ")) ; a =0
- if x < 0: - while a < 5:
‘ print('Negative') | . =a+ 1
if f‘ elif x == 0: : j‘ print(a, end= ' ' if a < 5 else ‘\n')

print('Zero")
else:

print('Positive')

. words = ['cat', 'window', 'defenestrate'l

- for w words: ‘ - for i range(5):
fOr print(w, len(w)) ' print(i)
for num range(2, 10):
: if num % 2 == 0:
continue L print("Found an even number", num)
' continue
print("Found a number", num)
- for num range(1l, 10): initlog(xargs):
. if num % 2 == 0. | pass
break | print("Found an even number", num) pass

break

print("Found a number", num)

https://docs.python.org/3/tutorial/controlflow.html

List and Tuples

;2
G2

https://g00.gl/TTNZhC

https://goo.gl/TTNZhC

Lists & Tuples

: squares = [1, 4, 9, 16, 25] ; * len(squares)

=

 squares[0]

SgEres o) ' squares[-1]

squares[2:4] ' squares[-3:]

[1, 2] ' , squares + [36, 49]
[3, 4]]

, [a, b]

. print(c[0][Q]) squares[0] = 100

12345, 54321, 'hello!’ - squares = []
S for X range(5):
, ‘ | squares = squares + [xkxx*2]
. t[0] = 88888 | print(squares)

- squares = [x#x2 for x range(5)1]
. print(squares)

- v = ([1, 2, 31, . squares = list(map(X: x*x2, range(5)))
L v[o]l[0] = 2 ' print(squares)

https://docs.python.org/3/tutorial/introduction.html#lists
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

Ist comprehension

* [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]

; combs = []
for x in [1,2,3]:
| for y in [3,1,41]:
if x '= y:
combs.append((x, y))

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

Sets and Dictionaries

[m]:x [m]

223

https://goo.gl/KcLDQE |

https://goo.gl/KcLDQE

Sets

" basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
- print(basket)
. 'orange' basket

‘crabgrass’ basket

set('abracadabra')
set('alacazam')

» {x for x 'abracadabra' if x 'abc'}

https://docs.python.org/3/tutorial/datastructures.html#sets

Dictionaries

* telephone = {'jack': 4098, 'sape': 4139}
telephone['guido'] = 4127

 telephone['jack']
' del telephonel['sape’]

list(telephone)
. sorted(telephone)

. 'guido’ tel
‘guido’ tel

dict([('sape', 4139), ('guido', 4127), ('jack', 4098)1)

© {x: x*x2 for x (2, 4, 6)}

< <

https://docs.python.org/3/tutorial/datastructures.html#dictionaries

lterators and

(Generators
1

SR

https://goo.gl/FCf79h

https://goo.gl/FCf79h

lterators & Generators

element in [1,
print(element)

element in (1,
print(element)

key in {'one':1, 'two':2}:
print(key)

char in "123":

print(char)

return_odd_elements(n):

for index in range(n):
if index % 2 > 0.
yield index

)1)

https://docs.python.org/3/tutorial/datastructures.html#dictionaries
https://docs.python.org/3/tutorial/classes.html#generators

Functions

[=]
Ei ,

https://goo.gl/yDEgHf

O

L

https://goo.gl/yDEgHf

Functions

sample function@araml, param2): List of parameters separated by comma. | swap(a):

'"'Docstring ""'This function swaps elements in a.

A Docstring (optional)

pass ' / alo]l, all] = al1l, al@]
Body of the function: statements that will be | |

. 4 sp.
£ executed when the function is called.

1= [1,2]
swap (1)
(1)

add_person(pb, name, surname, phone='not set'):

sample_function(): ‘
''"'This function sets a = @ and then increments a.] '''This function adds a person to a phonebook

pb[(name, surname)] = phone

; phonebook = {}
‘ ' add_person(phonebook, 'John', 'Doe', '07823472222"')
L a = 5 - * add_person(phonebook, ‘Foo', 'Bar')

sample_function() i fprint(phonebook)

- print(sample_function())

- print(a) | '
. print(b) ; ' person = ['John', 'Muir', '07424552345']
| ., add_person(phonebook, *person)
r add_person(phonebook, surname='Mike', name='White')
L) L S o] . : person = {'surname': 'Mike’,
print_table(header, *persons): | : ‘name': 'White', 'phone': '07424552345'}
print(header+'\n——") * add_person(phonebook, xxperson)

for p persons: f " print(phonebook)
print(p)
' print_table('Name', 'John', 'Mike', 'Mark')

< -

https://docs.python.org/3/tutorial/controlflow.html#defining-functions

Object-Oriented
Programming

OO
T

https://goo.gl/W4QERH

https://goo.gl/W4QERH

Class

Counter

+ value: int

+ max count: int

+ increment(): void

+ get_value(): int

Classes provide a means of bundling data and functionality
together.

=]

Creating a new class creates a new type of object, allowing
new instances of that type to be made.

[=] ¥

https://docs.python.org/3/tutorial/classes.html

EXPLORER @ counter_module.py X

4 OPEN EDITORS class Counter:

X @ counter_module.py counter_pack... fa

4 PYTHON

b .vscode

4 counter_package N
package

b test

@ __init__.py
@ counter_module.py

b hello_world \

b mathematics

& _init_py module
4 QUTLINE

Filter

*: Counter

Classes provide a means of bundling data and functionality
together.

=]

A class defines a new type of object, allowing new instances
of that type to be made.

https://docs.python.org/3/tutorial/classes.html

EXPLORER @ counter_module.py @

o000
1

4 OPEN EDITORS 1UNSAVED class Counter:

® @ counter_module.py counter_pack... max_count = 500

4 PYT N - s o
HO def __init__(self):
b .vscode self.value = 0

4 counter_package
b test def increment(self):

¥

L self.value = \
@ _Init_.py self.value + 1
@ counter_module.py

[.] b hello_world def get_value(self):
> mathematics return self.value
@ _init__.py

4 OUTLINE
Filter
4 %3 Counter

> @ _init_ {'\\ Visual Studio Code lists

b & increment
attributes and methods

b ¥ get_value

(+] max_count

Each class instance can have attributes attached to it for maintaining its state.

Class attributes belong to the class (and not to individual
instances).

Class instances can also have methods (defined by its class)
for modifying its state.

https://docs.python.org/3/tutorial/classes.html

Untitled Diagram

File Edit View Arrange Extras Help Unsaved changes. Click here to save.

| 100% Q Q L — r i
< < - class Counter:
Q X l max_count = 500
C=> o — |
S I .
T @ 1 Counter ! def __init__ (self):
/.\ = t ° + value: int . self.value = 0
>/ + max_count: int ,
[X + increment(void): void " HERAEE(SEly
7 Lf.val =
- + get_value(void): int ? - ve e)
j '—'l] —'[n:\ self.value + 1
]i H ==y o= g def get_value(self):

return self.value ;

_— List

This represents a class List as an aggregation (essentially
a container) of objects of type Counter.

Software engineers typically use graphical languages (e.g.
UML) to model complex projects involving many classes.

https://www.draw.io/

00
EXPLORER @ counter_module.py X

4 OPEN EDITORS class Counter:

X @ counter_module.py counter_pack... max_count = 500

4 PYTHON det _1n1t_(self):

b .vscode self.value = 0

4 counter_package
b test def increment(self):

@ _init__.py self.value = \

self.value + 1
@ counter_module.py

> hello_world def get_value(self):
b mathematics return self.value

@ _init__.py . ‘
if _name__ = "__main__":

4 OUTLINE ¢ = Counter()

Filter \\
4 %3 Counter

b0 _init__

instantiation

b & increment
b ¥ get_value
(+] max_count

(#] ¢
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL

Instantiation statement ¢ = Counter () creates a new instance of the class and
bind local variable x to this object.

&3
[=] ¥

[=]

Method _ init (self) is automatically invoked whenever a new instance of
the class is created; this method is employed to initialise the instance.

https://docs.python.org/3/tutorial/classes.html

“Assignments do not copy data —
they just bind names to objects”

Counter:
max_count = 500

__init_ (self

) :
.value = 0

increment(self):
.value = \
.value + 1

get_value(self):
return .value

t bind

__name__ == "_ maln__
cl = Counter()
c2 =cl
cl.increment()
del cl
print(c2.get_value())
print(cl.get_value())

“AsSI@

iIIIIIII reieersent ot teott et i — ottt = o i

—Python Tutorial

Class vs Instance Attribute

Counter:
max_count = 500

__init_ (self, initial value):
.value = initial_value

increment(self):
.value = \
.value + 1

get_value(self):
return .value

L if __name__ == "__main__":
c = Counter(5)
c.max_count = 10

print(c.max_count)

print(Counter.max_count)

< - _ - 5 S - o~

https://docs.python.org/3/tutorial/classes.html#class-and-instance-variables

Class vs Static Methods

. import math

- class Counter:
max_count = 500

def __init_ (self, initial_value):
self.value = initial value

increment(self):
self.value = \
self.value + 1

def get_value(self):
return self.value

@classmethod
def set_max_count(cls, max):
cls.max_count = max

@staticmethod
def square_root(n):
return math.sqrt(n)

__nhame__ == "__main__":

print(Counter.max_count)
Counter.set_max_count(10)
print(Counter.max_count)

print(Counter.square_root(36))

https://realpython.com/instance-class-and-static-methods-demystified/

Inheritance

., import math

Counter:
max_count = 500

__init_ (self, initial_value):
.value = initial value

increment(self):
.value = \
.value + 1

get_value(self):
return .value

CounterPlus(Counter):

decrement(self):
.value = \
.value - 1
; if __name__ =="_ main__
cp = CounterPlus(5)
cp.increment()
cp.decrement()

print(cp.get_value())

c = Counter(5)
)

c.decrement (

< - i

https://docs.python.org/3/tutorial/classes.html#inheritance

Why do | need to know
about O0O?

In fact, most of the standard modules you will end up using will be 0O...

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

Errors and Exceptions

=]

or
[=]

https://goo.gl/Mr7o0eE

https://goo.gl/Mr7oeE

Errors and Exceptions

In Python there are (at least) two distinguishable kinds of errors:
syntax errors and exceptions.

, while True print('Hello world"')

while True: print('Hello world"')

Even if a statement or expression is syntactically
correct, it may cause an error when an attempt is
made to execute it.

Errors detected during execution are called
exceptions and are not unconditionally fatal.

You must learn how to handle them in Python
programs.

https://docs.python.org/3/tutorial/errors.html

Errors and Exceptions

4 + spamx3
[l2| + 2

Exceptions come in different types, and the type is printed as
part of the message: the types in the example are
ZeroDivisionError, NameError and TypeError.

Handling Exceptions

, try:

x = int(input("Please enter a number: "))
except ValueError:
. print("Oops! That was no valid number. Try again...")
, except Exception as err:
| print("Name error: {0}".format(err))

} else:
{ print("Number entered: " + str(x))
. finally:

print("Always printed.")

Errors and Exceptions

4 + spamx3
[l2| + 2

Exceptions come in different types, and the type is printed as
part of the message: the types in the example are
ZeroDivisionError, NameError and TypeError.

Raising Exceptions

, class NewException(Exception):
pass

raise NameError(‘An error has occurred’)

except NameError as err:
print("Name error: {0}".format(err))

rrors and Exceptions

Fibonacci Series

, def fibonacci(n):
'"'This procedure prints the first n Fibonacci series elements
if not(isinstance(n, int)):
raise Exception('Fibonacci takes only integer values.')

a, b=20, 1

while a < n:
print(a)
a, b =D>b, a+b

- if __name__ == "__main__

fibonacci(5.5)

< -

. line 5, in fibonacci raise Exception('Fibonacci takes only integer values.')
' Exception: Fibonacci takes only integer values.

< - - - <

| errors excep’f'\ons
There are no mistakes, only happy little aceidents.”

_Roberto Ross!

—Robert{Bob)-Ross

Duck Typing
-
5

https://goo.gl/9hsAzu |

[=]

https://goo.gl/9hsAzu

Duck lyping

“If it walks like a duck and it guacks like a duck, then
it must be a duck (or a rabbit?)”

https://hackernoon.com/python-duck-typing-or-automatic-interfaces-73988ec9037f

Duck lTyping

Duck():
quack(self):
return 'Duck Quack!'

Goose():
quack(self):
return 'Goose Quack!'

Dog():
pass

animals_who_quack(animals):

for a animals:
try:
yield a.quack()
except AttributeError:
pass
, 1f __name__ == "__main__
duck = Duck()
goose = Goosel()
dog = Dog()

animals = [duck, goose, dog]
print([x for x animals_who_quack(animals)])

< - _r 5 L 0 < - Dy S . -

Test-driven

Development

[=]
=

https://qoo.gl/KP9k3P

[=]

https://goo.gl/KP9k3P

“Where shall | begin, please your Majesty?” he asked.
“Begin at the end,” the King said gravely,
“and go on till you come to the beginning: then stop.”

#testdrivendevelopment

EXPLORER “ test_counter.py X

4 OPEN EDITORS import unittest
X @ test_counter.py counter_package import counter_package.counter_module as cm

4 INTRO_TO_PYTHON (WORKSPACE) e T el _ \
(un 1est Jebug | est

-

4 python class TestCounter(unittest.TestCase): import our counter _module
b .vscode and define an alias cm

4 counter_package

lef T)s
) setUp(self)

» __init__.py self.c = cm.Counter(0)
% test_counter.py
) _init__py def tearDown(self):
counter_module.py

Dass
b hello_world

b mathematics tun Test | Debug Test

-

, _init__py def testCounter(self):

4 QUTLINE - - -
self.c.increment()

Filter self.assertEqual(self.c.get_value(), 1)

First write the test procedures (“begin at the end”)...

<N N
EXPLORER @ counter_module.py @

4 OPEN EDITORS 1UNSAVED import math

® @ counter_module.py counter_pack...
4 INTRO_TO_PYTHON (WORKSPACE)

3ss Counter:
max_count = 500

4 python
? b .vscode def __init_ (self, initial_value):

4 counter_package self.value = initial_value

% 4 test
def increment(self):

» _Init__.py self.value = \

[-'} @ test_counter.py self.value + 1
» __init__.py

@ counter_module.py

lef get_value(self):

return self.value
b hello_world

b mathematics
» __init__.py
4 QUTLINE

... and then implement relevant classes/methods (“walk your way back!”).

EXPLORER @ counter_module.py @

coeoe
1

4 OPEN EDITORS 1UNSAVED import math
® @ counter_module.py counter_pack...

4 INTRO_TO_PYTHON (WORKSPACE)

4 python
b .vscode def __init_ (self, initial_value):
self.value = initial _value

3ss Counter:
max_count = 500

4 counter_package

O
“ ‘test lef increment(self):

» _init__.py self.value = \
» test_counter.py self.value + 1
» __init__.py

® counter module.py def get_value(self):

return self.value
> hello_world

» mathematics
» _init__.py
4 QUTLINE

Regularly verify that your code passes all tests!
- .

© 0 A 0 Anaconda, Inc. Python 3.6.4 (base) 1

Extras

Reading and Writing Files

o s < J S

. with open('workfile.txt', 'w') as f:
f.write('This is a test\n')
t print(f.closed)

; with open('workfile.txt') as f:

| read_data = f.read()
print(read_data)

» print(f.closed)

https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files

Handling Input Arguments

import sys

. def hello_msg():
' "'"'"This procedure prints an information message including:

the name of the script;
the number of arguments passed to the script;
the value of these arguments.

print("This is the name of the script: ", sys.argv[0])
print("Number of arguments: ", len(sys.argv))
print("The arguments are: " , str(sys.argv))

- if _ _name__ B
hello_msg()

- $ python arguments.py "first argument"
- This is the name of the script: arguments.py

. Number of arguments: 2
" The arguments are: ['arguments.py', 'first argument']

https://docs.python.org/3/tutorial/stdlib.html#command-line-arguments

Coding Style

Use 4-space indentation, and no tabs. 4 spaces are a good
compromise between small indentation (allows greater nesting depth)
and large indentation (easier to read). Tabs introduce confusion, and are
best left out.

Wrap lines so that they don’t exceed 79 characters. This helps users
with small displays and makes it possible to have several code files
side-by-side on larger displays.

Use blank lines to separate functions and classes, and larger
blocks of code inside functions.

When possible, put comments on a line of their own.

D0

Use docstrings.

https://docs.python.org/3/tutorial/controlflow.html#intermezzo-coding-style

Coding Style

Use spaces around operators and after commas, but not inside
bracketing constructs:a = £(1, 2) + g(3, 4).

Name your classes and functions consistently; the convention is to
use CamelCase for classes and lower_case_with_underscores for
functions and methods. Always use self as the name for the first
method argument.

Don’t use fancy encodings if your code is meant to be used In
international environments. Python’s default, UTF-8, or even plain
ASCII work best in any case.

Likewise, don’t use non-ASCII characters in identifiers if there is
only the slightest chance people speaking a different language will read
or maintain the code.

Assignments

Euclid’s GCD Algorithm

e Develop a Python implementation of Euclid’s GCD
algorithm. Use a test-driven development approach!

PROP. L

Tawo snequal numbeys AR, A...E.GBS 53 -
CD, being given, if the leffer €C.F.D £33
CD, be continually taken from H--- When two unequal numbers are set out, and the

the greater AB (and therefidue _ ; ; .
EB from CD, &c.) byfi” aliernate [ubtradtion, and the less is continually subtracted in turn from the

A0
mumber vemaining do never meafure the precedent, till ’""E’ greater, if the number which is left never E
’

G B be taken ; then ave the numbers which were given A S ; ; T o .
CD, prime the e to the otber é} measures the one before it until a unit is left,

If you deny it, let AB; CD, have a common meafure, then the original numbers are relatively prime.
namelythe number H, therefore H meafuring CD, doth
s alfo meafure AE ; and b confequently.the remainder . . E
EB; 4 therefore it likewife meafures CF, atd 4 fo the & if.ax.7. Euclid's Elements, Book VII, Proposition 1
remainder FD; 4 therefore it alfo meafures EG: But b1z.4x. 7.
it meafured the whole EB, and b therefore it muff ea-
fure that which remaineth GB, that is, a number mea-
fares unity. ¢ W bich is abfurd - C9. ax I

.

3 . PROP. | Pseudocode implementation

Et.JcIid's Elements, Bo.ok VII, Prbposition 1,

-] The algorithm can be expressed as:
by Isaac Barrow, Master of Trinity College, Cambridge

function gcd(a, b)
while a # b

“ 1 o
a0 by

b :=b - a;
return a;

A fragment of Euclid's Elements on part of the Oxyrhynchus papyri

...of course there are plenty of Python implementations on line,
but try to come up with your implementation! https://goo.gl/wwQz5A

https://en.wikipedia.org/wiki/Euclidean_algorithm
http://www.macs.hw.ac.uk/~markl/teaching/CODES/L5.pdf
https://goo.gl/wwQz5A

Bubble Sort Algorithm

Develop a Python implementation of the Bubble Sort
algorithm. Use a test-driven development approach!

Pseudocode implementation | edit]

The algorithm can be expressed as (0-based array):.

procedure bubbleSort(A : list of sortable items)
n = length(A)
repeat
swapped = false
for 1 = 1 to n-1 inclusive do
/* 1if this pair is out of order */
if A[i-1] > A[i] then
/* swap them and remember something changed */
swap(A[i-1], A[i])
swapped = true

end 1if
end for Static visualisation
until not swapped of bubble sort
end procedure
...of course there are plenty of Python implementations on line, httos://d00.al/r828xJ

but try to come up with your implementation!

https://en.wikipedia.org/wiki/Bubble_sort
https://goo.gl/r828xJ

Eratostene’s Sieve

e Develop a Python implementation of Eratostene’s sieve.

Use a test-driven development approach! ;54
“ n
Pseudocode | edit]
The sieve of Eratosthenes can be expressed in pseudocode, as follows:!7 I8! E
Input: an integer n > 1.
Let A be an array of Boolean values, indexed by integers 2 to n,
initially all set to true.
OOV ACOYEOY VD
o na Vs M 2 @ K g K@ K ® ¥
for 1 .2, 3, &, , hot exceeding \n Ao @ A H K A A (@)
if A[1] is true: D A AN AXDHA A S
for j = i?, i%+i, i%+2i, i?+3i, ..., not exceeding n: @ 7 @ s ¥ K@K F
A[j] := false. g () HF 8 K (9)
s 5 () M
Output: all 1 such that A[1I] is true. OO I R O
P (1] PN BON I A AOW
oA s () K s

Prime numbers up to 100

...of course there are plenty of Python implementations on line,
but try to come up with your implementation!

https://goo.gl/KAiXUN

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://goo.gl/KAiXUN

Treasure Hunt

e Develop an OO code to navigate the following maze and
play the game described below.

T north

< west

- east >

start south no way back!

north
north

\/

treasure room!

he player starts in cell A and can move in the directions indicated.
The game ends when the player reaches the treasure room G,
or ends in room F and dies.

| don’t think you will find this one online... A_A

Book Catalogue

e (Goodreads is an app that maintains three lists: books you
have read; books you are reading; and books you want to

read.

e Develop an OO code as close as possible to Goodreads:
ideally you should be able to insert/remove items into any
of the three lists and print any of the lists. Once more, use

test-driven development.

https://www.goodreads.com/

The Zen of Python

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.

Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.

Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Tim Peters

https://www.python.org/dev/peps/pep-0020/

References

OFfO

My favourite YouTube Python Course:

https://goo.gl/SFPPw6

https://goo.gl/SFPPw6

™

@ python

© Roberto Rossi, 2018
University of Edinburgh

