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Abstract: We consider the periodic-review, single-location, single-product, produc-
tion/inventory control problem under non stationary demand and service-level constraints.
The product is perishable and has a fixed shelf life. Costs comprise fixed ordering costs and
inventory holding costs. For this inventory system we discuss a number of control policies that
may be adopted. For one of these policies, we assess the quality of an approximate Constraint
Programming (CP) model for computing near optimum policy parameters.
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1. INTRODUCTION

As pointed out in Entrup (2005), Advanced Planning
Systems generally tend to not adequately incorporate shelf
life aspects of food in their inventory control facilities.

Inventory problems of perishable products have been dis-
cussed extensively in the literature. Nahmias (1982) pro-
vides a review of the early literature on ordering policies
for perishable inventories between 1960s and 1982. Karaes-
men et al. (2011) review the more recent supply chain
management literature of perishable products having fixed
or random lifetimes. For these problems, the structure of
the optimal replenishment policy is typically complex: the
replenishment quantity depends on the individual age cat-
egories of current inventories and all outstanding orders.
For this reason, the authors point out that developing
effective heuristic policies is of great practical importance
in inventory systems for perishable items.

We consider the periodic-review, single-location, single-
product, production / inventory control problem under
non stationary demand and service-level constraints. The
product is perishable and has a fixed shelf life. Costs
comprise fixed ordering costs and inventory holding costs.
A similar problem was considered in Minner and Transchel
(2010); however the authors adopted the simplifying as-
sumption that fixed ordering costs are negligible. For this
inventory system we discuss a number of control policies
that may be adopted. For one of these policies, we assess
the quality of the approximate Constraint Programming
(CP) model proposed in Rossi et al. (2010).

2. PROBLEM DESCRIPTION

We consider a planning horizon ofN periods and a demand
dt for each period t ∈ {1, . . . , N}, which is a non-negative
random variable with known probability density function
gt(dt). We assume that the demand occurs instantaneously
at the beginning of each time period. The demand is
non-stationary, that is it can vary from period to period
and demands in different periods are assumed to be

independent. Demands occurring when the system is out
of stock are back-ordered and satisfied as soon as the next
replenishment order arrives. The sellback of excess stock is
not allowed. A fixed delivery cost a and a proportional unit
cost u are incurred for each order. A replenishment order is
assumed to arrive instantaneously at the beginning of each
period, before the demand in that period occurs. For ease
of exposition, we assume that there is no replenishment
lead-time; however, the model can be easily extended to
systems with positive and fixed replenishment lead-times.
Each item that is delivered by the supplier arrives fresh
and expires in exactly M + 1 periods; therefore a product
age may range from 0 to M . A linear holding cost h is
incurred for each unit of product carried in stock from one
period to the next. A linear wastage cost w is incurred,
at the end of each period, for each unit of product that
reached age M . Our aim is to find a replenishment plan
that minimizes the expected total cost, which is composed
of ordering costs, holding costs, and wastage costs over an
N -period planning horizon, while satisfying given service
level constraints. As service level constraints, we require
that, with a probability of at least α, at the end of each
period the net inventory will be non-negative.

The actual sequence of actions is to some extend arbitrary.
In what follows, we will assume that at the beginning of a
period, the inventory on hand after all the demands from
previous periods have been realized is known, for each
product age that is available. Since we are assuming com-
plete backlogging, this quantity may be negative. However,
note that only fresh products can be backordered, since the
supplier only delivers fresh products. On the basis of this
information, an ordering decision is made for the current
period and the respective order is immediately received.
Then the period demand is observed and the stock is
reduced according to a “first in first out” (FIFO) issuing
policy. If, after the demand has been observed, there are
still items of age M in stock, these are disposed at cost w
per unit. Finally, holding cost is incurred on the remaining
stock that is carried over to the next period.
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Fig. 1. Stochastic programming model

3. STOCHASTIC PROGRAMMING MODEL

We extend the chance-constrained model originally pro-
posed in Bookbinder and Tan (1988) and relax the as-
sumption that items can be held in stock for a potentially
unlimited amount of time. The chance-constrained model
is shown in Fig. 1. Our extended model tracks inventory of
different ages via dedicated random variables and issuing
policy constraints. More specifically, Ii0 denotes the initial
inventory of age i ∈ {0, . . . ,M − 1}, without loss of
generality here assumed to be zero (Const. 6). Iit denotes
inventory level of age i ∈ {1, . . . ,M} at the end of period
t ∈ {1, . . . , N}, a random variable that takes non-negative
values, since non-fresh products cannot be ordered (Const.
7). I0t denotes fresh items in stock at the end of period
t ∈ {1, . . . , N}, a random variable that takes real values,
since fresh products can be back-ordered (Const. 8). δt is
a binary decision variables that is set to 1 if and only if
an inventory review is scheduled in period t ∈ {1, . . . , N}
(Const. 9). Qt denotes the non-negative order quantity in
period t ∈ {1, . . . , N} (Const. 10); in other words, items
in stock cannot be returned to the supplier. The objective
function (1) minimizes the expected total cost, which is
composed by the fixed ordering/setup cost a for each order
placed, the unit ordering cost for each item ordered, the
unit holding cost h for products in stock carried from one
period to the next, the unit wastage cost w for items that
expire. Const. 2 states that a replenishment is scheduled,
and the respective fixed cost is incurred in the objective
function, if the order quantity is positive at a given period
t ∈ {1, . . . , N}. Const. 3 is the inventory conservation
constraint, which relates the inventory level at the end
of period t, the order quantity Qt in period t, the realized
demand dt in period t, and the inventory carried over from
period t−1 to period t. Const. 4 implements a FIFO issuing
policy and the respective rule for the “consumption” and
“aging” of items in stock. Const. 5 enforces the service
level in each period.

4. OPTIMAL POLICY

Deriving the optimal policy for the stochastic program
discussed in Section 3 is a non-trivial task. To date, there
exists no complete solution method for accomplishing this
task for a generic demand distribution. However, when
the stochastic demand dt in period t = 1, . . . , N follows
a discrete distribution defined over a finite support, the
optimal policy for the stochastic program discussed in
Section 3 can be obtained, for small instances, by using
a deterministic equivalent scenario based model, see Birge
and Louveaux (1997).

Numerical example We consider a planning horizon com-
prising 4 periods. In each period we observe a random de-
mand that follows a discrete distribution. The probability
mass functions for the demand is

pmf(d1) = {18(0.5), 26(0.5)}
pmf(d2) = {52(0.5), 6(0.5)}
pmf(d3) = {9(0.5), 43(0.5)}
pmf(d4) = {20(0.5), 11(0.5)}.

Accordingly, in period 1 we may observe 2 values for the
random demand, 18 and 26, each of which occurs with
probability 0.5. The complete set of scenarios is presented
in Table 1. The fixed delivery cost a is set to 300, the

Scenario d1 d2 d3 d4 Probability

1 18 52 9 20 0.0625
2 18 52 9 11 0.0625
3 18 52 43 20 0.0625
4 18 52 43 11 0.0625
5 18 6 9 20 0.0625
6 18 6 9 11 0.0625
7 18 6 43 20 0.0625
8 18 6 43 11 0.0625
9 26 52 9 20 0.0625
10 26 52 9 11 0.0625
11 26 52 43 20 0.0625
12 26 52 43 11 0.0625
13 26 6 9 20 0.0625
14 26 6 9 11 0.0625
15 26 6 43 20 0.0625
16 26 6 43 11 0.0625

Table 1. Scenarios

proportional unit cost u to 2, the holding cost h to 1 and
the wastage cost w to 4. The shelf life M is set to 2 and
the prescribed satisfaction probability α is 0.85. By using
a scenario-based deterministic equivalent mixed integer
linear programming model we can solve the above instance
in reasonable time. The optimal policy is presented in Fig.
2. Black nodes in the policy tree represents orders. The
respective order quantity is displayed beside the node. We
observe stock-outs in 2 scenarios over 16 (non-stockout
probability: 0.875), in both period 3 and 4. Waste is
observed at the end of period 3 in scenarios 13, . . . , 16.

Unfortunately, an optimal policy is highly unstructured
and therefore hardly usable in practice. In what follows we
will therefore discuss more structured and usable subop-
timal policies, which feature different levels of complexity
when it comes to implementation.
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5. REPLENISHMENT CYCLE POLICY

Different inventory control policies can be implemented
for the stochastic program in Section 3. Bookbinder and
Tan (1988) define a number of policies that are applicable
when items are not perishable. These policies are moti-
vated by practical considerations on inventory handling
practices. We developed deterministic equivalent scenario
based mixed integer linear programming (MILP) model
for computing policy parameters under different strategies.
For space reasons, this and the following MILP models are
not included in this document.

5.1 “Static uncertainty” strategy

The first strategy introduced by Bookbinder and Tan
in Bookbinder and Tan (1988) is the so-called “static-
uncertainty” strategy. In this strategy order quantities and
review times are fixed once-and-for-all at the beginning of
the planning horizon. In practice, this policy may be of
interest for practitioners in all those situations in which
replenishment periods as well as precise order quantities
must be agreed with the customer in advance.

Numerical example. We consider the same instance
discussed in Section 4. We solve this instance by using
the MILP model developed (Table 2).

Expected total cost: 1065.5

Period 1 2 3 4

Qt 78 0 54 0

Table 2. Optimal policy parameters under a
“static-uncertainty” strategy

In several situations, however, the “static-uncertainty”
strategy results not flexible enough. When customer de-
mand is non-stationary and the accuracy of the forecast

is low, Bookbinder and Tan (1988) proposed a more flexi-
ble strategy known as “static-dynamic uncertainty”. This
strategy features a series of review times, all fixed at the
beginning of the planning horizon (i.e., the static aspect of
the strategy). This provides an effective means of damping
planning instability (deviations in planned orders, also
known as nervousness de Kok and Inderfurth (1997)).
However, the actual order quantities are determined only
after observing the realized demand (i.e., the dynamic
aspect of the strategy).

5.2 “Static-dynamic uncertainty” strategy

When items in stock are perishables, the “static-dynamic
uncertainty” strategy may be formulated as a stock-age
independent or as a stock-age dependent policy.

Stock age independent A stock-age independent “static-
dynamic uncertainty” strategy associates with each review
period an order-up-to-level. As in the classical “static-
dynamic uncertainty” strategy for non-perishable items,
the order quantity is computed as the amount of stock
required to raise the inventory level up to the order-up-
to-level, regardless of the age of products in stock carried
over from previous periods. Order-up-to-levels for review
periods are set in such a way as to compensate for the
realized waste and to ensure the required service level.
This strategy may be appealing for practitioners, since it
does not require to take into account the different ages of
stock on hand. However, it may clearly produce higher
waste than a stock-age dependent policy and therefore
incur higher expected total costs, since order quantities
do not take into account the age, but only the number of
items available in stock.

Numerical example We consider the same instance dis-
cussed in Section 4. We solve this instance by using the
MILP model developed (Table 3).

Expected total cost: 1005.5

Period 1 2 3 4

St 78 0 66 0
δt 1 0 1 0

Table 3. Optimal policy parameters under a
stock age independent “static-dynamic uncer-

tainty” strategy

Stock age dependent Conversely, a stock-age dependent
“static-dynamic uncertainty” strategy does not operate
based on order-up-to-levels. For each review period the
order quantity is computed as the minimum amount of
stock required to guarantee the required service level up
until the next review period. This quantity is computed by
taking into account the age and the amount of items avail-
able in stock. This strategy may guarantee lower waste and
expected total cost than a stock-age independent “static-
dynamic uncertainty” strategy. However, the computation
of the order quantity is more complex that in a stock-age
independent strategy. This complicates the implementa-
tion of this strategy in practical settings.

Numerical example We consider the same instance dis-
cussed in Section 4. We solve this instance by using the
MILP model developed (Fig 3).
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In what follows, we will concentrate on the stock-age de-
pendent “static-dynamic uncertainty” strategy. This strat-
egy is preferred to the others described above because of
the flexibility it ensures in order quantity computation.
This flexibility ensures lower waste and expected total
costs. Furthermore, a decision maker usually relies on
advanced ERP systems to automate the computation of
actual order quantities. Therefore, although the implemen-
tation is slightly more complicated than that of a stock-age
independent “static-dynamic uncertainty” strategy, this
policy remains viable in practice.

6. A BRUTE FORCE APPROACH FOR THE STOCK
AGE DEPENDENT “STATIC-DYNAMIC

UNCERTAINTY” STRATEGY

We introduce the notion of replenishment cycle.

Definition 1. A replenishment cycle T (i, j) is the time
span between two consecutive replenishments in periods
i and j + 1, where i ≤ j.

Definition 2. The cycle opening-inventory-level R(i, j) is
minimum opening inventory level in period i that is
required in order to satisfy the service level constraints
over a replenishment cycle T (i, j).

Finding an optimal non-stationary replenishment cycle
policy means finding a set of non-overlapping replenish-
ment cycles and the respective opening-inventory-levels.

Once i and j have been fixed, so to identify a replenishment
cycle T (i, j), it is straightforward to compute the cycle
opening-inventory-level by using the well-known newsboy
formula, see e.g. Axsäter (2010). Consider the cumulative
distribution function of di+ . . .+dj , Gdi+...+dj (·). If we as-
sume that Gdi+...+dj (·) is strictly increasing, G−1

di+...+dj
(·)

is uniquely defined. Then it is straightforward to compute
the cycle opening inventory level

R(i, j) = G−1
di+...+dj

(α) (11)

that guarantees a non-stockout probability α in each
period t ∈ {i, . . . , j}.
When items do not expire, under a replenishment cy-
cle policy, the order quantity at period i is easily com-
puted. The decision maker simply determines the closing-
inventory-level at the end of the previous period, Ii−1,
and she orders a quantity Q = R(i, j) − Ii−1. Therefore
the cycle opening-inventory-level R(i, j) is employed as an
order-up-to-level, that is the level up to which stocks have
to be raised as a consequence of the order placed. The order
quantity is computed via a simple linear relation between
the order-up-to-level and the closing-inventory-level at the
end of the previous period. Unfortunately, this simple rule
cannot be applied if part or all the inventory carried over
from period i− 1 is going to expire before period j, since
the realized waste depends upon the demand distribution.
The computation of the order quantity is complex. In fact,
the order quantity depends on the order-up-to-level, on the
different product ages carried over from previous periods,
and on the demand distribution in each period of the cycle.
In order to enable the decision maker to implement a non-
stationary replenishment cycle policy for perishable items,
we introduce an effective strategy for computing the order
quantity Q at the beginning of each cycle.

To introduce our strategy, we discuss the problem of com-
puting the minimum order quantity Q that is required to
meet prescribed service level constraints during a replen-
ishment cycle T (i, j) when a mix of items with different
age categories is already available in the system at the
beginning of period i. Let Imi−1 be the available inventory

of age m. Consider an array I = {I0i−1, I
1
i−1, . . . , I

M
i−1} de-

scribing the available inventory at the beginning of period
i, before our ordering decision is made. Note that I0i−1
may be negative in order to keep track of situations in
which we start with some backordered demand. For the
coming j − i + 1 periods, in each period t ∈ {i, . . . , j} we
observe a normally distributed demand dt with probability
density function g(dt), mean µt and standard deviation σt.
There is a service level constraint enforcing a non-stockout
probability α in each period t. Consider period t, where
i ≤ t ≤ j ≤ M + 1, since an item can be used only
over M +1 periods. Items are issued according to a FIFO
issuing policy. The service level constraint for period t can
be written as

Pr{I0t ≥ 0} ≥ α. (12)

In other words, only fresh items can be backordered. We
now introduce the following stochastic recurrence relation

Imt = max(Im−1
t−1 −max(dt −

M−1∑
k=m

Ikt−1, 0), 0), (13)

for t = i, . . . , j and m = 2, . . . ,M . Furthermore,

I0t = min(0,
M−1∑
k=0

Ikt−1 − dt), (14)

for t = i+ 1, . . . , j; and

I0t = Q+min(0,

M−1∑
k=0

Ikt−1 − dt), (15)



for t = i. We also consider the indicator function

f(Q, di, di+1, . . . , dt) =

{
1 if I0t ≥ 0
0 otherwise

,

where I0t is computed according to Eq. 13, 14 and 15.

Given the array I, describing the available inventory at
the beginning of period i, before our ordering decision is
made, and an ordering decision Q, by using the indicator
function introduced in concert with Eq. 13, 14 and 15, we
express the service level constraint as∫

di

. . .

∫
dt

f(Q, di, . . . , dt)g(di) . . . g(dt)ddi . . . ddt ≥ α.

(16)
The left hand side of Eq. 16 is increasing inQ, therefore the
minimum order quantity that satisfies the above relation
can be found using a binary search procedure that numer-
ically integrates the expression. Due to the cost structure
of the stochastic program in Section 3, it is clear that, for
a given replenishment cycle, the minimum Q that satisfies
Eq. 16 also minimizes the expected total cost for that
cycle. In our numerical experiments, we employ Monte
Carlo integration to numerically integrate Eq. 16 with a
precision of ±0.005 at 95% confidence.

It should be noted that, if the net inventory is negative (i.e.
we begin the cycle with backorders) Q is equal to the cycle
opening-inventory-level plus the items backordered and no
search is needed. On the other hand, if the net inventory
at the beginning of the cycle is positive we can identify two
limit cases: if no item expires during the cycle, Q is equal
to the difference between the cycle opening-inventory-level
and the inventory carried over from previous periods. Con-
versely, if all the on-hand inventory expires immediately, Q
is simply equal to the cycle opening-inventory-level. These
two limit cases provide bounds within which the binary
search has to be performed.

Since the computation of the order quantity Q for a given
replenishment cycle T (i, j) has been now made explicit.
Given a set of replenishment cycles, the decision maker can
implement the non-stationary replenishment cycle policy
for perishable items by employing, at the beginning of
each replenishment cycle, the procedure discussed above
for computing the associated minimum order quantity Q.
Since unit, holding and wastage costs are all increasing in
Q, the minimum feasible value for Q is cost-optimal.

Numerical example For the same instance discussed in
Section 4, we consider a replenishment cycle that starts in
period 3 and ends in period 4. The initial inventory array
is I = {44, 2, 0}. The procedure discussed prescribes an
optimal order quantity Q = 17.

If the planning horizon comprises a limited number N of
periods (i.e. up to 20 periods), it is possible to find a set
of non-overlapping replenishment cycles that minimize the
expected total cost under a stock age dependent “static-
dynamic uncertainty” strategy, by using a “brute force”
approach. In other words, we can try all the possible
2N combinations of review periods and then estimate by
simulation and confidence interval analysis the expected
total cost of the heuristic stock age dependent “static-
dynamic uncertainty” strategy discussed.

Numerical example We consider the same instance dis-
cussed in Section 4. We solve this instance by using the
“brute force” approach. The resulting policy places orders
in period 1 and 3, the respective order quantities can
be computed at the beginning of a given replenishment
period via the binary search approach introduced above
once demand in previous periods has been observed. The
expected total cost of this strategy is 1006, about 3%
costlier than the optimal stock age dependent “static-
dynamic uncertainty” strategy (i.e. 973.5).

However, in order to plan weekly production for a year (i.e.
N = 36 weeks) this approach is not viable due to the large
number of review period combinations that have to be
assessed by simulation. It is therefore essential to develop
heuristic approaches to the stock age dependent “static-
dynamic uncertainty” strategy. These strategies should
compute a near-optimal set of non-overlapping replenish-
ment cycles. Furthermore, they should also provide a good
approximation of the expected total cost a decision maker
expects to face by employing such a set of review periods.
The quality of these heuristics can be assessed, for small
instances, against the solution produced by the “brute
force” approach just discussed.

6.1 A CP model for computing re-order points

Following a modeling strategy that resembles the one
discussed in Tarim and Kingsman (2004) and Tarim and
Smith (2008), Rossi et al. (2010) discussed a heuristic
CP model for solving the stochastic program in Section 3
under a stock age dependent “static-dynamic uncertainty”
strategy. The model provides a set of review periods and
an estimation of the total cost the decision maker is
expected face if inventory reviews are planned according
to this plan. As discussed in Section 6, once a set of
review periods is known, we can dynamically integrate Eq.
16 to determine the respective order quantities according
to a stock age dependent “static-dynamic uncertainty”
strategy.

Numerical example We consider the same instance dis-
cussed in Section 4. We solve this instance by using the CP
model discussed in Rossi et al. (2010). The CP model is
solved by using the normally distributed demands in Table
4 from which the probability mass functions in Section 4
were sampled. The resulting policy correctly suggests to

Demand d1 d2 d3 d4
µ 22 29 26 16
σ 4 23 17 5

Table 4. Normally distributed demands

place orders in period 1 and 3. The estimated expected
total cost of this strategy, i.e. objective function of the
CP model at optimality, is 951, that is 5% less than the
actual cost (i.e. 1006) we observe when we adopt this
replenishment plan and we compute order quantities by
using the strategy discussed in Section 6.



7. COMPUTATIONAL EXPERIMENTS

We consider a demand that is normally distributed in each
period of the planning horizon. In the following patterns

Pattern
1 → 8, 9.5, 2, 9, 8, 1.5, 6.5, 8, 9, 3, 1.5, 6
2 → 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
3 → 6, 7.3, 8.5, 9, 8.5, 7.3, 6, 4.7, 3.5, 3, 3.5, 4.7
4 → 1.5, 2, 3.5, 6, 8, 8.5, 9, 10.5, 9.5, 6.5, 5, 2
5 → 19, 9.5, 0.4, 0.8, 0.3, 1.5, 8, 9.5, 11, 3.5, 1.5, 7

figures represent expected demand in ’00 units for each
of the twelve periods in the planning horizon. The five
patterns considered are derived from Berry (1972) and
represent erratic (1), stationary (2), seasonal (3), life cycle
(4), highly erratic (5) demand, respectively. The model
parameters are N = 12, M = 2 (shelf life of 3 periods),
and a = 3000, h = 1, u = 2. The remaining parameters
range in the following sets, α = {0.90, 0.95, 0.98}, w =
{0, 2, 4}, and σdi = {1/3, 1/4, 1/10}, where σdi denotes the
standard deviation of the demand in period i = 1, . . . , N .

We compared the policies produced by the CP model
against those obtained via the brute force approach dis-
cussed in Section 6. Expected total cost of these policies
has been estimated by simulation. In the estimation of the
expected total cost we allowed a maximum error of ±1%
at 95% confidence. In Fig. 4 we reported results for our
analysis by using box plots. The average cost difference
observed is 0.21%; most of the dispersion lies within ±1%.
This shows that the CP model generates near optimal
policies. We also investigated how the cost predicted by
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Fig. 4. Cost difference (in percentage of the optimum
policy cost) between CP policies and optimum policies
obtained with the approach discussed in Section 6.

the CP model approximates the actual cost of the policy
generated. The cost prediction errors are reported in Fig.
5. From these results it is clear that the CP model tends
to underestimate costs. However, it is apparent that this
underestimation is very low, in fact, on average, the actual
cost is underestimated by -0.68%. Most of the dispersion
lies within 0 and 1%, with the exception of the highly
erratic pattern, for which the under estimation is slightly
higher. This demonstrates that the CP model not only
generates near optimal policies, but also provides a good
approximation of the cost of these policies.
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