
Evolving Parameterised Policies for
Stochastic Constraint Programming⋆

S. D. Prestwich1, S. A. Tarim2, R. Rossi3, and B. Hnich4

1Cork Constraint Computation Centre, University College Cork, Ireland
2Operations Management Division, Nottingham University Business School, Nottingham, UK

3Logistics, Decision and Information Sciences Group, Wageningen UR, the Netherlands
4Faculty of Computer Science, Izmir University of Economics, Turkey

s.prestwich@cs.ucc.ie, armtar@yahoo.com,
roberto.rossi@wur.nl, brahim.hnich@ieu.edu.tr

Abstract. Stochastic Constraint Programming is an extension of Constraint Pro-
gramming for modelling and solving combinatorial problemsinvolving uncer-
tainty. A solution to such a problem is a policy tree that specifies decision vari-
able assignments in each scenario. Several solution methods have been proposed
but none seems practical for large multi-stage problems. Wepropose an incom-
plete approach: specifying a policy tree indirectly by a parameterised function,
whose parameter values are found by evolutionary search. Onsome problems
this method is orders of magnitude faster than a state-of-the-art scenario-based
approach, and it also provides a very compact representation of policy trees.

1 Introduction

Stochastic Constraint Programming (SCP) is a recently proposed extension of Con-
straint Programming (CP) designed to model and solve complex problems involving
uncertainty and probability, a direction of research first proposed in [2]. Stochastic Con-
straint Satisfaction Problems (SCSPs) are in a higher complexity class than Constraint
Satisfaction Problems (CSPs) and usually harder to solve.

An m-stage SCSP is defined as a tuple(V, S, D, P, C, Θ, L) whereV is a set of
decision variables,S a set of stochastic variables,D a function mapping each element
of V ∪S to a domain of values,P a function mapping each variable inS to a probability
distribution,C a set of constraints onV ∪ S, Θ a function mapping each constraint in
C to a threshold valueθ ∈ (0, 1], andL = (〈V1, S1〉, . . . , 〈Vm, Sm〉) a list of decision
stagessuch that theVi partitionV and theSi partitionS. Each constraint must contain
at least oneV variable, a constrainth ∈ C containing onlyV variables is ahard
constraintwith thresholdΘ(h) = 1, and one containing at least oneS variable is a
chance constraint. To solve anm-stage SCSP an assignment to the variables inV1 must
be found such that, given random values forS1, assignments can be found forV2 such
that, given random values forS2, . . . assignments can be found forVm so that, given

⋆ B. Hnich is supported by the Scientific and Technological Research Council of Turkey
(TUBITAK) under Grant No. SOBAG-108K027. This material is based in part upon works
supported by the Science Foundation Ireland under Grant No.05/IN/I886.

random values forSm, the hard constraints are each satisfied and the chance constraints
(containing both decision and stochastic variables) are satisfied in the specified fraction
of all possiblescenarios(set of values for the stochastic variables). A useful concept is
that of apolicy treeof decisions, in which each node represents a value chosen for a
decision variable, and each arc from a node represents the value assigned to a stochastic
variable. Each path in the tree represents a different possible scenario and the values
assigned to decision variables in that scenario. Asatisfying policy (tree)is a policy tree
in which each chance constraint is satisfied with respect to the tree. A chance constraint
h ∈ C is satisfied with respect to a policy tree if it is satisfied under some fraction
φ ≥ Θ(h) of all possible paths in the tree.

As an example, consider a 2-stage SCSP withV1 = {x1}, S1 = {s1}, V2 = {x2}
and S2 = {s2}. Let dom(x1) = [1, 4], dom(x2) = [3, 6], dom(s1) = [4, 5] and
dom(s2) = [3, 4] where[a, b] represents the discrete interval{i ∈ Z | a ≤ i ≤ b},
and the stochastic variable values each have probability 0.5. There are two chance con-
straintsc1: (s1x1 + s2x2 ≥ 30) andc2: (s2x1 = 12) with θc1

= 0.75 andθc2
= 0.5.

Decision variablex1 must be set to a unique value while the value ofx2 depends on
that ofs1. A policy for this problem is shown in Figure 1: notice that itis in the form
of a tree. The 4 scenarios A, B, C and D each have probability 0.25. Constraintc1 is
satisfied in A, C and D therefore with probability 0.75. Constraint c2 is satisfied in A
and C therefore with probability 0.5. These probabilities satisfy the thresholdsθc1

, θc2

so this is a satisfying policy.

x1=3

x2=4 x2=6

s1=5s1=4

s2=3 s2=4 s2=3 s2=4

A B C D

Fig. 1. Example of a satisfying policy tree

No practical way of solving large multi-stage SCSPs has yet been proposed. The
design of local search algorithms for SCP has been suggested[20] in order to improve
scalability but this idea does not seem to have been pursued,and it does not address
the problem of representing large policy trees. We propose anovel approach: using an
evolutionary algorithm to choose parameter values for a parameterised function that
indirectly specifies a policy tree. The result is an incomplete SCP algorithm that is
intended to scale well in two ways: a simple parameterised function can be used to

represent a large policy tree, and evolutionary search can handle problems with many
decision variables.

The paper is organised as follows. Section 2 describes how toevolve parameterised
functions that specify policies. Section 3 shows empirically that an evolutionary algo-
rithm can find a function representing a satisfying policy. Section 4 discusses related
work. Section 5 concludes the paper.

2 Evolving parameterised policies

Instead of explicitly representing a policy tree we use a parameterised functionτw,
whose input is the current stochastic variable assignmentsand a decision variable, and
whose output is a domain value for that variable. Its parametersw = (w1, w2. . . .) are
real-valued numbers which we shall callweights. τw completely defines the policy tree,
and if it does not require an exponential number of weights then it avoids the memory
problem associated with large trees. For any given functionthere exist policy trees that
cannot be represented, and there is a risk that these are the only satisfying policy trees,
but the hope is that relatively simple functions will sufficefor most problems of interest.

To simplify the discussion we consider only SCSPs whose decision and stochastic
variable domains are intervals[L, U] of integer values, but the method easily generalises
to variables with other domains. We assume a fixed ordering ofthe problem variables
(any ordering that conforms to the stage structure will do).First we compute an affine
function

αw(S, xj) = wj +
∑

i∈σj

wisi

whereσj denotes the set of indices of the stochastic variablesS that precede decision
variablexj . This is the simplest possible function that involves all relevant stochastic
variables; we do not claim that it will suffice for all SCSPs, but it requires only a linear
number of weights and works well in experiments so far (see Section 3). The constant
wj is necessary because in the case of a decision variablexj that is not preceded by any
stochastic variable (so thatσj = ∅) we require a default value: in the special cases of
a deterministic CSP or a 1-stage SCSP no decision variable ispreceded by a stochastic
variable, so the policy is simply a weightwj for each decision variablexj . Note that the
stochastic variablesSm (those in the final stage) do not precede any decision variables,
and therefore do not appear inw: thus they do not appear in the policy, though they are
used to evaluate it.

However, the value ofαw(S, xj) is a real number and not a domain value, so to
obtain an integer in[L, U] it is discretised by truncation, then modular arithmetic is
used to obtain an integer in the required range:

τw(S, xj) = L + (⌊αw(S, xj)⌋ mod [U − L + 1])

Noww defines a policy: for each decision variablexj we choose its value to beτw(S, xj).
For example, consider a 3-stage problem withV1 = {x1, x2}, S1 = {s1, s2}, V2 =

{x3, x4}, S2 = {s3, s4}, V3 = {x5, x6} andS3 = {s5, s6}. Suppose we wish to find

the value ofx3 given thats1 = 5, s2 = 7, dom(x3) = [5, 10] and our policy is specified
by a weight vector

w = (0.1, 5.3, 7.1, 9.9, 8.7, 4.1,−0.6, 5.5,−5.2, 2.9)

Notice thatw has 10 components though there are 12 variables in the SCSP: this is
because theS3 variables do not precede any decision variables, as mentioned above.
Then

αw(S, x3) = 8.7 + 7.1s1 + 9.9s2 = 113.5

and

τw(S, x3) = 5 + (⌊113.5⌋ mod [10 − 5 + 1]) = 5 + (113 mod6) = 5 + 5 = 10

So under the policy defined byw, variablex3 is set to 10 under any scenario in which
s1 = 5 ands2 = 7.

Now that we have defined the form of our policies we can describe how to search
for them. The state space to be explored is the Cartesian productRk representing the
space of real-valued weight vectorsw, wherek is the total number of SCP variables not
counting those inSm. To handle the SCP constraints we usepenalty functionsto obtain
an unconstrained optimisation problem: this is a standard technique that penalises con-
straint violations, commonly used when applying genetic algorithms or local search to
CSPs. Specifically, the objective function to be minimised is

Φ(w) =
∑

h∈C

φ(h, w)

where the penalty functions are

φ(h, w) =

{

0 if πh(w) ≥ Θ(h)
Θ(h) − πh(w) if πh(w) < Θ(h)

andπh(w) is the probability that thath is satisfied under the policy defined byw. Any
policy defined byw such thatΦ(w) = 0 is clearly a satisfying policy.

Given the search space and objective function we can apply anevolutionary (or
local) search algorithm to solve the problem. In this paper we do not describe the al-
gorithm we used in detail because our emphasis is on showing the feasibility of the
approach. Briefly, it is a cellular evolution strategy with Cauchy mutation, plus some ad-
ditional mutation heuristics designed for this application. Each chromosome is a weight
vectorw, and for each chromosome we compute its fitnessΦ(w) (fitness is convention-
ally maximised but we minimiseΦ). To compute theπh(w) we check every leaf node
in the implied policy tree. The probability associated witha leaf ℓ is the product of
the probabilities associated with the stochastic variableassignments in the arcs of the
path leading toℓ. At each leaf a chance constrainth ∈ C is either satisfied or violated,
and by summing the probabilities of the leaves at whichh is satisfied we obtain the
probability thatπh(w) thath is satisfied under the policy defined byw. Theπh(w) can
also be estimated by sampling the leaves using any of the scenario reduction techniques
used in [18], and this is important for problems with many stages. But we can sample

many more leaves than [18] because we do not use them to derivea deterministic CSP
(in section 3 we use over 1000 scenarios). Chance and hard constraints are treated uni-
formly: the only difference between them is that a hard constrainth hasΘ(h) = 1 while
a chance constraint hasΘ(h) < 1. We could computeπh(w) for every chromosome by
using all leaves, but to be more efficient we use a number of leaves that depends on
how promising the current fitness estimate is: only the fittest chromosomes (including
the one representing the satisfying policy tree) sample allleaves. To do this we use the
resampling scheme of [15].

We call our method EPP (Evolved Parameterised Policies). EPP transforms a multi-
stage SCSP into a noisy numerical optimisation problem. Theword “noisy” here refers
to the fact that the objective function must be averaged overmany scenarios. There are
many evolutionary algorithms designed to handle noisy fitness functions: see [3, 9] for
surveys.

3 Experiments

In this section we show empirically that it is possible to finda satisfying policy us-
ing EPP. We use a benchmark set of random SCSPs with 5 chance constraints over 4
decision variablesx1 . . . x4 and 8 stochastic variabless1 . . . s8. The decision variable
domains are the discrete intervals dom(x1) = [5, 10], dom(x2) = [4, 10], dom(x1) =
[3, 10] and dom(x2) = [6, 10]. The domains of stochastic variables1, s3, s5, s7 contain
2 values while those ofs2, s4, s6, s8 contain 3 values; in both bases the values are cho-
sen randomly from the discrete interval[1, 5] and have equal probabilities. The chance
constraints are:

x1s1 + x2s2 + x3s3 + x4s4 = 80 (θ = α)
x1s5 + x2s6 + x3s7 + x4s8 ≤ 100 (θ = β)
x1s5 + x2s6 + x3s7 + x4s8 ≥ 60 (θ = β)

x1s2 + x3s6 ≥ 30 (θ = 0.7)
x2s4 + x4s8 = 20 (θ = 0.05)

whereα ∈ {0.005, 0.01, 0.03, 0.05, 0.07, 0.1} andβ ∈ {0.6, 0.7, 0.8}. The problems
are 4-stage:V1 = {x1}, S1 = {s1, s5}, V2 = {x2}, S2 = {s2, s6}, V3 = {x3},
S3 = {s3, s7}, V4 = {x4} andS4 = {s4, s8}. In total we have 6α-values and 3β-
values, and we randomly generate 5 different sets of stochastic variable domains, giving
90 instances in total.

The table in Figure 2 compares the scenario-based approach (SBA) of [18] (see
Section 4) with EPP. All figures are in seconds and “—” denotesthat the time is greater
than 200 seconds. All times were obtained on a 2.8 GHz Pentium(R) 4 with 512 MB
RAM, or on another machine then normalised to this one. EPP figures are medians over
30 runs. Both methods used all24×34 = 1296 scenarios. Though these are quite small
SCSPs they turn out to be non-trivial for SBA, which transforms them into deterministic
CSPs with 6739 variables and 6485 constraints. In contrast,EPP transforms them into
unconstrained noisy optimisation problems with 10 real-valued variables.

A clear pattern emerges from the results: where SBA solved a problem it was up
to 48 times faster than EPP, but EPP solved every problem thatSBA solved plus many

problem set 1 problem set 2 problem set 3 problem set 4 problem set 5
α β SBA EPP α β SBA EPP α β SBA EPP α β SBA EPP α β SBA EPP

0.6 0.05 — 0.50.6 0.05 — 1.60.6 0.05 0.7 0.40.6 0.05 — 4.20.6 0.05 — 0.1
0.6 0.10 — 1.00.6 0.10 — 4.80.6 0.10 0.5 3.10.6 0.10 — —0.6 0.10 — 0.5
0.6 0.12 — 0.90.6 0.12 — 140.6 0.12 0.5 3.10.6 0.12 — —0.6 0.12 — 0.7
0.6 0.15 — 1.40.6 0.15 — 150.6 0.15 — 150.6 0.15 — —0.6 0.15 — 0.8
0.6 0.17 — 1.70.6 0.17 — 1180.6 0.17 — 140.6 0.17 — —0.6 0.17 — 2.2
0.6 0.20 — 1.60.6 0.20 — —0.6 0.20 — 490.6 0.20 — —0.6 0.20 — 1.9
0.7 0.05 — 1.30.7 0.05 — 1.70.7 0.05 0.6 2.50.7 0.05 — 4.90.7 0.05 0.2 0.1
0.7 0.10 — 1.20.7 0.10 — 4.80.7 0.10 0.7 9.10.7 0.10 — —0.7 0.10 — 0.4
0.7 0.12 — 1.30.7 0.12 — 160.7 0.12 0.6 120.7 0.12 — —0.7 0.12 — 0.7
0.7 0.15 — 1.90.7 0.15 — 160.7 0.15 — 270.7 0.15 — —0.7 0.15 — 0.8
0.7 0.17 — 2.70.7 0.17 — 1440.7 0.17 — 460.7 0.17 — —0.7 0.17 — 1.8
0.7 0.20 — 2.80.7 0.20 — —0.7 0.20 — 1590.7 0.20 — —0.7 0.20 — 3.3
0.8 0.05 — 120.8 0.05 — 2.70.8 0.05 0.8 9.70.8 0.05 — 7.50.8 0.05 — 0.2
0.8 0.10 — 9.40.8 0.10 — 7.10.8 0.10 0.6 170.8 0.10 — —0.8 0.10 — 0.9
0.8 0.12 — 110.8 0.12 — 200.8 0.12 0.6 290.8 0.12 — —0.8 0.12 — 0.8
0.8 0.15 — 120.8 0.15 — 130.8 0.15 — 580.8 0.15 — —0.8 0.15 — 1.2
0.8 0.17 — 150.8 0.17 — —0.8 0.17 — 1090.8 0.17 — —0.8 0.17 — 1.6
0.8 0.20 — 130.8 0.20 — —0.8 0.20 — —0.8 0.20 — —0.8 0.20 — 3.3

Fig. 2. Experimental results

more, and in some cases EPP was at least 2000 times faster; EPPis on average much
faster than SBA. Where SBA and EPP both failed to solve an instance, the instance
might be infeasible. However, we do know that in a few cases both SBA and EPP failed
to solve a feasible instance (verified by further experiments) so there is room for im-
provement. It might be that our parameterised policy space does not contain satisfying
policies for these problems, and that a more complex parameterised function is required.

4 Related work

Several SCSP solution methods have been proposed. [20] presented two complete algo-
rithms based on backtracking and forward checking and suggested some approximation
procedures, while [1] described an arc-consistency algorithm. In the method of [18]
an SCSP is transformed into adeterministic equivalentConstraint Satisfaction Prob-
lem (CSP) and solved by standard CP methods. It is also extended to handle multiple
chance constraints and multiple objective functions. Thismethod gives much better per-
formance on the book production planning problem of [20] compared to the tree search
methods. To reduce the size of the CSPscenario reductionmethods are proposed, as
used in Stochastic Programming. These choose a small but representative set of sce-
narios. However, it might not always be possible to find a small representative set of
scenarios, and in some cases choosing an inappropriate set of scenarios can yield an un-
solvable CSP. Moreover, using even a modest number of scenarios leads to a CSP that
is several times larger than the original SCSP. [4] modify a standard backtracking al-
gorithm to one that can handle multiple chance constraints and uses polynomial space,

but is inefficient in time. [16] proposed a cost-based filtering technique for SCP. For
the special case of SCP with linear recourse, [19] propose a Bender’s decomposition
algorithm.

Stochastic Boolean Satisfiability (SSAT) is related to SCP.A recent survey of the
SSAT field is given in [13], on which we base this discussion. An SSAT problem can be
regarded as an SCSP in which all variable domains are Boolean, all constraints are ex-
tensional and may be non-binary, and all constraints are treated as a single chance con-
straint (there are also restricted and extended versions).Our method therefore applies
immediately to SSAT problems. SSAT algorithms fall into three classes: systematic, ap-
proximation, and non-systematic. Systematic algorithms are based on the standard SAT
backtracking algorithm and correspond roughly to some current SCP algorithms. Ap-
proximation algorithms work well on restricted forms of SSAT but less well on general
SSAT problems. For example the APPSSAT algorithm [12] considers scenarios in de-
creasing order of probability to construct a partial tree, but does not work well when all
scenarios have similar probability. A non-systematic algorithm for SSAT is randevalssat
[10], which applies local search to the decision (existential) variables in a random set
of scenarios. This algorithm also suffers from memory problems because it must build
a partial tree.

5 Conclusion

We have proposed a method for SCP called EPP, based on the evolution of a param-
eterised function that indirectly specifies a policy tree. EPP does not suffer from the
memory problems of most methods and does not introduce a large number of new vari-
ables. It is also the first incomplete algorithm for SCP, and experiments show that on
some problems EPP is several orders of magnitude faster thanthe current best (com-
plete) method. It does not exploit constraint filtering techniques but these could perhaps
be used to handle hard constraints. EPP will also require slight modification for han-
dling variable domains that contain arbitrary integers or real numbers, and for handling
problems with objective functions. We will explore these issues in future work and test
EPP on more interesting SCP problems, and also on SSAT, QBF and QCSP problems
which can all be modelled as SCSPs.

EPP is closely related to a machine learning method that has been used for many
optimisation problems involving uncertainty:neuroevolution. In neuroevolution the pa-
rameterised function is an artificial neural network whose parameters are the network
weights, which are found by evolutionary search. Unlike oursimple function, neural
networks are universal function approximators which can inprinciple approximate any
policy. They might turn out to be necessary for harder SCP problems, but on our bench-
mark set they had no effect other than to make the problem harder to solve, because they
must learn more weights. Neuroevolution has been applied tovery challenging control
problems with good results: see for example [7, 8, 17]. It hasalso been used for learning
to play games such as Backgammon [14], Go [11], Checkers [5] and Chess [6]. These
successes indicate that EPP might work well on real-world SCP problems that are too
large to solve by complete methods.

References

1. T. Balafoutis, K. Stergiou. Algorithms for Stochastic CSPs.12th International Conference
on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science
vol. 4204, Springer, 2006, pp. 44–58.

2. T. Benoist, E. Bourreau, Y. Caseau, B. Rottembourg. Towards Stochastic Constraint Pro-
gramming: A Study of On-Line Multi-Choice Knapsack with Deadlines.7th International
Conference on Principles and Practice of Constraint Programming, Lecture Notes in Com-
puter Science2239, Springer, 2001, pp. 61–76.

3. H.-G. Beyer. Evolutionary Algorithms in Noisy Environments: Theoretical Issues and Guide-
lines for Practice.Computer Methods in Applied Mechanics and Engineering186(2–4):239–
267, 2000.

4. L. Bordeaux, H. Samulowitz. On the Stochastic ConstraintSatisfaction Framework.ACM
Symposium on Applied Computing, 2007, pp. 316–320.

5. D. B. Fogel, K. Chellapilla. Verifying Anaconda’s ExpertRating by Competing Against
Chinook: Experiments in Co-Evolving a Neural Checkers Player. Neurocomputing42(1-
4):69–86, 2002.

6. D. B. Fogel, T. J. Hays, S. L. Hahn, J. Quon. A Self-LearningEvolutionary Chess Program.
Proceedings of the IEEE92(12):1947–1954, 2004.

7. F. Gomez, J. Schmidhuber, R. Miikkulainen. Efficient Non-Linear Control Through Neu-
roevolution.Journal of Machine Learning Research9:937–965, 2008.

8. N. M. Hewahi. Engineering Industry Controllers Using Neuroevolution.Artificial Intelli-
gence for Engineering Design, Analysis and Manufacturing19(1):49–57, 2005.

9. Y. Jin, J. Branke. Evolutionary Optimization in Uncertain Environments — a Survey.IEEE
Transactions on Evolutionary Computation9(3):303–317, 2005.

10. M. L. Littman, S. M. Majercik, T. Pitassi. Stochastic Boolean Satisfiability.Journal of Auto-
mated Reasoning27(3):251–296, 2001.

11. A. Lubberts, R. Miikkulainen. Co-Evolving a Go-PlayingNeural Network.Genetic and Evo-
lutionary Computation Conference, Kaufmann, 2001, pp. 14–19.

12. S. M. Majercik. APPSSAT: Approximate Probabilistic Planning Using Stochastic Satisfia-
bility. International Journal of Approximate Reasoning45(2):402–419, 2007.

13. S. M. Majercik. Stochastic Boolean Satisfiability. Handbook of Satisfiability, Chapter 27,
IOS Press, 2009, pp. 887–925.

14. J. B. Pollack, A. D. Blair. Co-Evolution in the Successful Learning of Backgammon Strategy.
Machine Learning32(3):225–240, 1998.

15. S. D. Prestwich, S. A. Tarim, R. Rossi, B. Hnich. A Steady-State Genetic Algorithm With
Resampling for Noisy Inventory Control.10th International Conference on Parallel Problem
Solving From Nature, Lecture Notes in Computer Sciencevol. 5199, Springer, 2008, pp. 559–
568.

16. R. Rossi, S. A. Tarim, B. Hnich, S. D. Prestwich. Cost-Based Domain Filtering for Stochastic
Constraint Programming.14th International Conference on Principles and Practice of Con-
straint Programming, Lecture Notes in Computer Science5202, Springer, 2008, pp. 235–250.

17. K. O. Stanley, R. Miikkulainen. Evolving Neural Networks Through Augmenting Topolo-
gies.Evolutionary Computation10(2):99–127, 2002.

18. S. A. Tarim, S. Manandhar, T. Walsh. Stochastic Constraint Programming: A Scenario-Based
Approach.Constraints11(1):1383–7133, 2006.

19. S. A. Tarim, I. Miguel. A Hybrid Bender’s Decomposition Method for Solving Stochastic
Constraint Programs with Linear Recourse.Lecture Notes in Computer Sciencevol. 3978,
Springer, 2006, pp. 133–148.

20. T. Walsh. Stochastic Constraint Programming.15th European Conference on Artificial Intel-
ligence, 2002.

