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Abstract. Stochastic Constraint Programming is an extension of Cainstro-
gramming for modelling and solving combinatorial problemgolving uncer-
tainty. A solution to such a problem is a policy tree that #jesx decision vari-
able assignments in each scenario. Several solution mettex@ been proposed
but none seems practical for large multi-stage problemspkfpose an incom-
plete approach: specifying a policy tree indirectly by agpaeterised function,
whose parameter values are found by evolutionary searctso@re problems
this method is orders of magnitude faster than a stateesfthscenario-based
approach, and it also provides a very compact representatipolicy trees.

1 Introduction

Stochastic Constraint Programming (SCP) is a recently ggeg extension of Con-
straint Programming (CP) designed to model and solve coopieblems involving
uncertainty and probability, a direction of research firsfgmsed in [2]. Stochastic Con-
straint Satisfaction Problems (SCSPs) are in a higher cexitplclass than Constraint
Satisfaction Problems (CSPs) and usually harder to solve.

An m-stage SCSP is defined as a tuplé S, D, P,C, 0, L) whereV is a set of
decision variables$ a set of stochastic variableB, a function mapping each element
of V'U.S to adomain of values? a function mapping each variable$ho a probability
distribution,C a set of constraints oW U S, © a function mapping each constraint in
C to a threshold valué < (0,1], andL = ((V4,51), ..., (Vin, Sm)) & list of decision
stagessuch that thé/; partitionV and theS; partition.S. Each constraint must contain
at least oné/ variable, a constrailt € C' containing onlyV variables is ahard
constraintwith threshold®(h) = 1, and one containing at least oSevariable is a
chance constrainfTo solve anm-stage SCSP an assignment to the variabl&§ imust
be found such that, given random values $or assignments can be found fgy such
that, given random values fdf;, . .. assignments can be found fo},, so that, given
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random values fo§,,,, the hard constraints are each satisfied and the chanceaiotsst
(containing both decision and stochastic variables) aisfteal in the specified fraction
of all possiblescenariogset of values for the stochastic variables). A useful cphise
that of apolicy treeof decisions, in which each node represents a value chosen fo
decision variable, and each arc from a node representslineassigned to a stochastic
variable. Each path in the tree represents a different plesscenario and the values
assigned to decision variables in that scenarisafisfying policy (treejs a policy tree

in which each chance constraint is satisfied with respetigdree. A chance constraint
h € C is satisfied with respect to a policy tree if it is satisfied @ndome fraction
¢ > O(h) of all possible paths in the tree.

As an example, consider a 2-stage SCSP With= {z1}, S1 = {s1}, Va = {z2}
and Sy = {so}. Let dom(z1) = [1,4], domz2) = [3,6], dom(s;) = [4,5] and
dom(sy) = [3,4] where[a, b] represents the discrete intendl € Z|a < i < b},
and the stochastic variable values each have probabilityThiere are two chance con-
straintsc;: (s1x1 + s2xo > 30) andes: (sex; = 12) with 6., = 0.75 andf., = 0.5.
Decision variabler; must be set to a unique value while the valuergfdepends on
that of s;. A policy for this problem is shown in Figure 1: notice thatstin the form
of a tree. The 4 scenarios A, B, C and D each have probabily. @onstraint; is
satisfied in A, C and D therefore with probability 0.75. Coastt c; is satisfied in A
and C therefore with probability 0.5. These probabilitiegsfy the threshold§,, , 6.,
so this is a satisfying policy.

sl=4 s1=5

x2=4<:> X2=6
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A B C D

Fig. 1. Example of a satisfying policy tree

No practical way of solving large multi-stage SCSPs has gentproposed. The
design of local search algorithms for SCP has been sugg€gih order to improve
scalability but this idea does not seem to have been pursumedit does not address
the problem of representing large policy trees. We propasaval approach: using an
evolutionary algorithm to choose parameter values for ampaterised function that
indirectly specifies a policy tree. The result is an inconIBCP algorithm that is
intended to scale well in two ways: a simple parameterisedtfon can be used to



represent a large policy tree, and evolutionary search aadla problems with many
decision variables.

The paper is organised as follows. Section 2 describes hewdive parameterised
functions that specify policies. Section 3 shows empilycélat an evolutionary algo-
rithm can find a function representing a satisfying polioyct®n 4 discusses related
work. Section 5 concludes the paper.

2 Evolving parameterised policies

Instead of explicitly representing a policy tree we use saapsaterised functior,,,
whose input is the current stochastic variable assignnamisa decision variable, and
whose output is a domain value for that variable. Its paramsat = (w;,ws....) are
real-valued numbers which we shall cakights 7, completely defines the policy tree,
and if it does not require an exponential number of weighas th avoids the memory
problem associated with large trees. For any given fundtiere exist policy trees that
cannot be represented, and there is a risk that these aralthgadisfying policy trees,
but the hope is that relatively simple functions will sufffoe most problems of interest.

To simplify the discussion we consider only SCSPs whoses@atand stochastic
variable domains are intervdl, U] of integer values, but the method easily generalises
to variables with other domains. We assume a fixed orderingeoproblem variables
(any ordering that conforms to the stage structure will &t we compute an affine
function

ayw(S,xj) = w; + Z w;S;

1€0;

whereo; denotes the set of indices of the stochastic variaBlésat precede decision
variablex ;. This is the simplest possible function that involves alévant stochastic
variables; we do not claim that it will suffice for all SCSPaf it requires only a linear
number of weights and works well in experiments so far (sesi@e3). The constant
wj is necessary because in the case of a decision varalket is not preceded by any
stochastic variable (so that = 0) we require a default value: in the special cases of
a deterministic CSP or a 1-stage SCSP no decision variapteé¢gded by a stochastic
variable, so the policy is simply a weigl; for each decision variable;. Note that the
stochastic variableS,, (those in the final stage) do not precede any decision vasabl
and therefore do not appearun thus they do not appear in the policy, though they are
used to evaluate it.

However, the value ofv, (S, z;) is a real number and not a domain value, so to
obtain an integer ifL, U] it is discretised by truncation, then modular arithmetic is
used to obtain an integer in the required range:

Tw(S,2j) = L + (|ow (S, z;)] mod[U — L + 1])
Now w defines a policy: for each decision variablewe choose its value to b, (S, ;).

For example, consider a 3-stage problem With= {x1, 22}, S1 = {s1, 82}, Va =
{z3,24}, S2 = {s3,84}, V3 = {x5,26} andSs = {ss, s¢}. Suppose we wish to find



the value ofzs giventhats; = 5, s = 7, dom(z3) = [5, 10] and our policy is specified
by a weight vector

w=(0.1,5.3,7.1,9.9,8.7,4.1,—0.6, 5.5, 5.2, 2.9)

Notice thatw has 10 components though there are 12 variables in the SGiSHs t
because thé&; variables do not precede any decision variables, as metiahove.
Then

(S, w3) = 8.7+ 7.151 +9.9s0 = 113.5

and
Tw(S,23) =54 ([113.5| mod[10 — 5+ 1]) = 5+ (113 mod6) = 5+ 5 = 10

So under the policy defined hy, variablezs is set to 10 under any scenario in which
s1=5 and52 =T.

Now that we have defined the form of our policies we can desdridow to search
for them. The state space to be explored is the CartesiamnugrB+ representing the
space of real-valued weight vectarswherek is the total number of SCP variables not
counting those irb,,,. To handle the SCP constraints we psmalty functionso obtain
an unconstrained optimisation problem: this is a standaridrtique that penalises con-
straint violations, commonly used when applying genetimethms or local search to
CSPs. Specifically, the objective function to be minimised i

B(w) =Y d(h,w)

hel

where the penalty functions are

{0 if 74 (w) > O(h)

02 = { &) o) 1 mea) = 60

andm, (w) is the probability that thak is satisfied under the policy defined by Any
policy defined byw such thatb(w) = 0 is clearly a satisfying policy.

Given the search space and objective function we can appvalutionary (or
local) search algorithm to solve the problem. In this paperd® not describe the al-
gorithm we used in detail because our emphasis is on showmdeasibility of the
approach. Briefly, it is a cellular evolution strategy witaehy mutation, plus some ad-
ditional mutation heuristics designed for this applicatiBach chromosome is a weight
vectorw, and for each chromosome we compute its fitrg@s) (fitness is convention-
ally maximised but we minimis#). To compute ther, (w) we check every leaf node
in the implied policy tree. The probability associated witheaf/ is the product of
the probabilities associated with the stochastic variaskignments in the arcs of the
path leading td. At each leaf a chance constraine C' is either satisfied or violated,
and by summing the probabilities of the leaves at whicls satisfied we obtain the
probability thatr, (w) thath is satisfied under the policy defined by Ther;, (w) can
also be estimated by sampling the leaves using any of thagoerduction techniques
used in [18], and this is important for problems with manygst But we can sample



many more leaves than [18] because we do not use them to @edigerministic CSP

(in section 3 we use over 1000 scenarios). Chance and hastramts are treated uni-
formly: the only difference between them is that a hard aamsth has©(h) = 1 while

a chance constraint haih) < 1. We could compute,(w) for every chromosome by
using all leaves, but to be more efficient we use a number okkethat depends on
how promising the current fitness estimate is: only the fitttsomosomes (including

the one representing the satisfying policy tree) sampliealles. To do this we use the
resampling scheme of [15].

We call our method EPP (Evolved Parameterised Policies).tedhsforms a multi-
stage SCSP into a noisy numerical optimisation problem.\dre “noisy” here refers
to the fact that the objective function must be averaged masy scenarios. There are
many evolutionary algorithms designed to handle noisy $irfenctions: see [3, 9] for
surveys.

3 Experiments

In this section we show empirically that it is possible to famdatisfying policy us-
ing EPP. We use a benchmark set of random SCSPs with 5 chansgaints over 4
decision variables; ...z, and 8 stochastic variables . .. sg. The decision variable
domains are the discrete intervals dam) = [5,10], dom(zz) = [4, 10], dom(z;) =
[3,10] and donfx2) = [6, 10]. The domains of stochastic variabilg ss, s5, s7 contain

2 values while those of;, s4, sg, sg contain 3 values; in both bases the values are cho-
sen randomly from the discrete interya) 5] and have equal probabilities. The chance
constraints are:

181 + TaS2 + 353 + 454 = 80 (0 =)

T1S5 + X956 + 357 + 1458 < 100 (9 = ﬁ)

T1S5 + X286 + 357 + 1488 > 60 (9 = ﬁ)
X189 + I3S6 Z 30 (9 = 07)
X284 + X488 = 20 (9 = 005)

wherea € {0.005,0.01,0.03,0.05,0.07,0.1} and 3 € {0.6,0.7,0.8}. The problems
are 4-stagely = {z1}, S1 = {s1,s5}, Vo = {2}, So = {s2,s6}, V3 = {x3},
S3 = {ss3,s7}, Va = {4} and Sy = {s4, ss}. In total we have Gx-values and 33-
values, and we randomly generate 5 different sets of sttichasiable domains, giving
90 instances in total.

The table in Figure 2 compares the scenario-based appr&8A) (of [18] (see
Section 4) with EPP. All figures are in seconds and “—" denttasthe time is greater
than 200 seconds. All times were obtained on a 2.8 GHz Per{f)m with 512 MB
RAM, or on another machine then normalised to this one. ERPdfgare medians over
30 runs. Both methods used afi x 3* = 1296 scenarios. Though these are quite small
SCSPs they turn out to be non-trivial for SBA, which transfethem into deterministic
CSPs with 6739 variables and 6485 constraints. In con&®¥®, transforms them into
unconstrained noisy optimisation problems with 10 redld variables.

A clear pattern emerges from the results: where SBA solvexbhblgm it was up
to 48 times faster than EPP, but EPP solved every problenStatsolved plus many



problemset1 | problemset2 | problemset3 | problemset4 | problem set5
a (SBAEPR o« (GSBAEPR o« [BSBAEPHR o« [BSBAEPR a [ SBAEPH
0.60.05 — 0.%0.60.05 — 1.60.60.05 0.7 0.0.60.05 — 4.20.60.05 — 0.1
0.60.10 — 1.(0.60.10 — 4.890.60.10 05 3.060.10 — —0.60.10 — 0.5
0.60.12 — 0.%0.60.12 — 140.60.12 05 3.0.60.12 — —0.60.12 — 0.7
0.60.15 — 1406015 — 1%0.60.15 — 1%0.60.15 — —0.60.15 — 0.8
06017 — 106017 — 1180.60.17 — 140.60.17 — —0.60.17 — 2.2
06020 — 1606020 — —0.6020 — 490.6020 — —0.6020 — 1.9
0.70.05 — 1.30.70.05 — 1.10.70.05 0.6 2.®.70.05 — 4.90.70.05 0.2 0.0
0.70.10 — 1.20.70.10 — 4.80.70.10 0.7 9.0.70.10 — —0.70.10 — 0.4
0.70.12 — 1.%0.70.12 — 160.70.12 0.6 1.70.12 — —0.70.12 — 0.7
0.70.15 — 1.90.70.15 — 160.70.15 — 270.70.15 — —0.70.15 — 0.8
0.70.17 — 2.J.70.17 — 1440.70.17 — 4¢0.70.17 — —0.70.17 — 1.8
0.70.20 — 2.80.7020 — —0.70.20 — 15%0.70.20 — —0.70.20 — 3.3
0.80.05 — 120.80.05 — 2.10.80.05 0.8 9.,0.80.05 — 7.0.80.05 — 0.2
0.80.10 — 940.80.10 — 7.1080.10 0.6 10.80.10 — —0.80.10 — 0.9
0.80.12 — 110.80.12 — 2(0.80.12 0.6 2®.80.12 — —0.80.12 — 0.8
0.80.15 — 120.80.15 — 13.80.15 — 58.80.15 — —0.80.15 — 1.2
0.80.17 — 1%.80.17 — —0.80.17 — 10%0.80.17 — —0.80.17 — 1.6
0.80.20 — 1%.8020 — —080.20 — —0.80.20 — —0.80.20 — 3.3

Fig. 2. Experimental results

more, and in some cases EPP was at least 2000 times fasteis BRRverage much
faster than SBA. Where SBA and EPP both failed to solve amammst, the instance
might be infeasible. However, we do know that in a few casé¢is 8B8A and EPP failed
to solve a feasible instance (verified by further experimesto there is room for im-
provement. It might be that our parameterised policy spaes diot contain satisfying
policies for these problems, and that a more complex paeaiset! function is required.

4 Reélated work

Several SCSP solution methods have been proposed. [2@heeitwo complete algo-
rithms based on backtracking and forward checking and stgdsome approximation
procedures, while [1] described an arc-consistency dlgoriln the method of [18]
an SCSP is transformed intodeterministic equivalenConstraint Satisfaction Prob-
lem (CSP) and solved by standard CP methods. It is also eadetodhandle multiple
chance constraints and multiple objective functions. Tishod gives much better per-
formance on the book production planning problem of [20] paned to the tree search
methods. To reduce the size of the C&fnario reductionmethods are proposed, as
used in Stochastic Programming. These choose a small bigsexgative set of sce-
narios. However, it might not always be possible to find a snegresentative set of
scenarios, and in some cases choosing an inappropriatesseinarios can yield an un-
solvable CSP. Moreover, using even a modest number of soenaads to a CSP that
is several times larger than the original SCSP. [4] modifyamdard backtracking al-
gorithm to one that can handle multiple chance constraimdsuges polynomial space,



but is inefficient in time. [16] proposed a cost-based fittgriechnique for SCP. For
the special case of SCP with linear recourse, [19] proposeral&’s decomposition
algorithm.

Stochastic Boolean Satisfiability (SSAT) is related to SE€Pecent survey of the
SSAT field is given in [13], on which we base this discussion. FSAT problem can be
regarded as an SCSP in which all variable domains are Boadlaronstraints are ex-
tensional and may be non-binary, and all constraints aagetieas a single chance con-
straint (there are also restricted and extended versi@ns)method therefore applies
immediately to SSAT problems. SSAT algorithms fall intogclasses: systematic, ap-
proximation, and non-systematic. Systematic algorithradased on the standard SAT
backtracking algorithm and correspond roughly to someetur8CP algorithms. Ap-
proximation algorithms work well on restricted forms of SISBut less well on general
SSAT problems. For example the APPSSAT algorithm [12] abersi scenarios in de-
creasing order of probability to construct a partial trag,dpes not work well when all
scenarios have similar probability. A non-systematic ethm for SSAT is randevalssat
[10], which applies local search to the decision (existdptiariables in a random set
of scenarios. This algorithm also suffers from memory peais because it must build
a partial tree.

5 Conclusion

We have proposed a method for SCP called EPP, based on th#iewaf a param-
eterised function that indirectly specifies a policy treBPEdoes not suffer from the
memory problems of most methods and does not introduce e tangber of new vari-
ables. It is also the first incomplete algorithm for SCP, axppkeiments show that on
some problems EPP is several orders of magnitude fasterthieacurrent best (com-
plete) method. It does not exploit constraint filtering teicues but these could perhaps
be used to handle hard constraints. EPP will also requigatsihodification for han-
dling variable domains that contain arbitrary integerseal numbers, and for handling
problems with objective functions. We will explore thessuigs in future work and test
EPP on more interesting SCP problems, and also on SSAT, QBR&SP problems
which can all be modelled as SCSPs.

EPP is closely related to a machine learning method that éas bsed for many
optimisation problems involving uncertaintyeuroevolutionin neuroevolution the pa-
rameterised function is an artificial neural network whoaeameters are the network
weights, which are found by evolutionary search. Unlike sianple function, neural
networks are universal function approximators which caprinciple approximate any
policy. They might turn out to be necessary for harder SCBIpros, but on our bench-
mark set they had no effect other than to make the problenehtodolve, because they
must learn more weights. Neuroevolution has been appligdpchallenging control
problems with good results: see for example [7, 8, 17]. Itdias been used for learning
to play games such as Backgammon [14], Go [11], Checkersb|Ghess [6]. These
successes indicate that EPP might work well on real-worlg $fblems that are too
large to solve by complete methods.
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