
A Survey on CP-AI-OR Hybrids for
Decision Making under Uncertainty

Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

Abstract In this survey we focus on problems of decision making under un-
certainty. Firstly, we clarify the meaning of the word “uncertainty” and we
describe the general structure of problems that fall into this class. Secondly,
we provide a list of problems from the Constraint Programming, Artificial
Intelligence and Operations Research literatures in which uncertainty plays a
role. Thirdly, we survey existing modeling frameworks that provide facilities
for handling uncertainty. A number of general purpose and specialized hybrid
solution methods are surveyed, which deal with the problems in the list pro-
vided. These approaches are categorized into three main classes: stochastic
reasoning-based, reformulation-based and sample-based. Finally, we provide
a classification for other related approaches and frameworks in the literature.

1 Introduction

In this work we survey problems in which we are required to make de-
cisions under uncertainty, and we categorize existing hybrid techniques in

Brahim Hnich
Department of Computer Engineering, Izmir University of Economics, Turkey,
brahim.hnich@ieu.edu.tr

Roberto Rossi
Logistics, Decision and Information Sciences, Wageningen UR, the Netherlands,
roberto.rossi@wur.nl

S. Armagan Tarim
Department of Management, Hacettepe University, Ankara, Turkey,
armtar@yahoo.com

Steven Prestwich
Cork Constraint Computation Centre, University College Cork, Ireland,
s.prestwich@4c.ucc.ie

1



2 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

Constraint Programming (CP), Artificial Intelligence (AI) and Operations
Research (OR) for dealing with them. The word uncertainty is used to char-
acterize the existence, in these problems, of uncontrollable or “random” vari-
ables1, which cannot be influenced by the decision maker. In addition to these
random variables, problems also comprise controllable or “decision” variables,
to which a value from given domains has to be assigned. More specifically, a
problem classified as deterministic with respect to the degree of uncertainty
does not include random variables, while a stochastic problem does.

Random variables are typically employed to model factors such as the
customer demand for a certain product, the crop yield of a given piece of
land during a year, the arrival rate of orders at a reservation center and so
forth. A continuous or discrete domain of possible values that can be observed
is associated with each random variable. A probabilistic measure — typically
a probability distribution — over such a domain is assumed to be available
in order to fully quantify the likelihood of each value (respectively, range of
values in the continuous case) that appears in the domain.

The decision making process comprises one or more subsequent decision

stages. In a decision stage, a decision is taken by the decision maker who
assigns a value to each controllable variable related to this decision stage of
the problem and, subsequently, the uncontrollable variables related to this
stage are observed and their realized values become known to the decision
maker.

It should be noted that, in this work, we do not consider situations in
which the decision maker has the power to modify the probability distribution
of a given random variable by using his decisions. Random variables are
therefore fully uncontrollable. To clarify, this means that a situation in which
the decision maker has the option of launching a marketing campaign to
affect the distribution of customer demands will not be considered.

This work is structured as follows: in Section 2 we employ a motivating
example and a well established OR modeling framework — Stochastic Pro-
gramming — in order to illustrate key aspects associated with the process
of modeling problems of decision making under uncertainty; in Section 3 we
provide a list of relevant problems from the literature on hybrid approaches
for decision making under uncertainty and, for each problem, we also provide
a short description and a reference to the work in which such a problem has
been proposed and tackled; in Section 4 we introduce frameworks, respec-
tively from AI and from CP, that aim to model problems of decision making
under uncertainty; in Section 5, we classify existing hybrid approaches for
tackling problems of decision making under uncertainty into three classes: in
the first class (Section 6) we identify general and special purpose approaches
that perform “stochastic reasoning”, in the second class (Section 7) we list
approaches, general and special purpose, that use reformulation, and in the
third class (Section 8) we categorize approximate techniques based on a va-

1 Alternatively, in the literature, these variables are also denoted as “stochastic”.



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 3

riety of strategies employing sampling; finally, in Section 9 we point out
connections with other related works, and in Section 10 we draw conclusions.

2 Decision Making Under Uncertainty

Several interesting real world problems can be classified as “stochastic”. In
this section we use a variant of the Stochastic Knapsack Problem (SKP)
discussed in [34] as a running example to demonstrate ideas and concepts
related to stochastic problems.

Single-stage Stochastic Knapsack. A subset of k items must be chosen,
given a knapsack of size c into which to fit the items. Each item i, if included
in the knapsack, brings a deterministic profit ri. The size ωi of each item
is stochastic and it is not known at the time the decision has to be made.
Nevertheless, we assume that the decision maker knows the probability mass
function PMF(ωi) [31], for each i = 1, . . . , k. A per unit penalty cost p has to
be paid for exceeding the capacity of the knapsack. Furthermore, the proba-
bility of the plan not exceeding the capacity of the knapsack should be greater
than or equal to a given threshold θ. The objective is to find the knapsack
that maximizes the expected profit.

We now discuss Stochastic Programming, which is one of the most well known
modeling approaches in OR for problems of decision making under uncer-
tainty, such as the SKP. We arbitrarily chose to employ such a framework to
introduce the key concepts of decision making under uncertainty. In the next
sections, the following frameworks will be also introduced: Stochastic Boolean
Satisfiability, Probabilistic Constraint Satisfaction Problems, Event-Driven
Probabilistic Constraint Programming and Stochastic Constraint Program-
ming.

Stochastic Programming (SP) [11, 32] is a well established technique of-
ten used for modeling problems of decision making under uncertainty. A
Stochastic Program typically comprises a set of decision variables defined over
continuous or discrete domains, a set of random variables also defined over
continuous or discrete domains and, for each random variable, the respective
probability density function (PDF) if continuous or probability mass func-
tion (PMF) if discrete. Decision and random variables are partitioned into
decision stages. Within a decision stage, firstly, all the associated decision
variables are assigned values; and secondly, all the associated random vari-
ables are observed. A set of constraints is usually enforced over decision and
random variables in the model. These constraints may be hard, that is they
should always be met regardless of the values that are observed for the ran-
dom variables, or they may be chance-constraints [15]. Chance-constraints
are constraints that should be satisfied with a probability exceeding a given



4 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

Objective:

max



P

k

i=1
riXi − pE

h

P

k

i=1
ωiXi − c

i+
ff

Subject to:

Pr
n

P

k

i=1
ωiXi ≤ c

o

≥ θ

Decision variables:

Xi ∈ {0, 1} ∀i ∈ 1, . . . , k

Random variables:

ωi → item i weight ∀i ∈ 1, . . . , k

Stage structure:

V1 = {X1, . . . , Xk}
S1 = {ω1, . . . , ωk}
L = [〈V1, S1〉]

Fig. 1 A Stochastic Programming formulation for the single-stage SKP. Note that [y]+ =
max{y, 0} and E denotes the expected value operator

threshold. If the problem is an optimization one, it may minimize/maximize
an objective function defined over some expressions on possible realisations
(for example, maximize the worst case performance of the stochastic system
under control, or minimize the difference between the maximum and mini-
mum values a performance measure may take to increase the robustness of a
system) or some probabilistic measure — such as expectation or variance —
of decision and random variables in the model.

To clarify these concepts we now introduce a Stochastic Programming
model for the single-stage SKP (Fig. 1). The objective function maximizes the
trade-off between the reward brought by the objects selected in the knapsack
(those for which the binary decision variable Xi is set to 1) and the expected
penalty paid for buying additional capacity units in those scenarios in which
the available capacity c is not sufficient. Control actions that are performed
after the uncertainty is resolved — such as buying additional capacity at a
high cost — are called, in SP, “recourse actions”. The only chance-constraint
in the model ensures that the capacity c is not exceeded with a probability
of at least θ. There is only a single decision stage in the model. Decision
stages define how uncertainty unfolds in the decision making process. In other
words, what the alternation should be between decisions and random variable
observations. In a decision stage 〈Vi, Si〉, first we assign values to all the
decision variables in the set Vi, then we observe the realized values for all the
random variables in the set Si. More specifically, in the single decision stage
〈V1, S1〉 of the SKP, first we select all the objects that should be inserted into
the knapsack, that is we assign a value to every decision variable Xi ∈ V1,
∀i ∈ 1, . . . , k; second, we observe the realized weight ωi ∈ S1 for every object
i ∈ 1, . . . , k.

We now introduce a numerical example for the single-stage SKP.



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 5

Example 1. Consider k = 5 items whose item rewards ri are {16, 16, 16, 5, 25}.
The discrete probability mass functions for the weight ωi of item i = 1, . . . , 5
are respectively:
PMF(ω1) = {10(0.5), 8(0.5)}, PMF(ω2) = {9(0.5), 12(0.5)}, PMF(ω3) =
{8(0.5),
13(0.5)}, PMF(ω4) = {4(0.5), 6(0.5)}, PMF(ω5) = {12(0.5), 15(0.5)}.
The figures in parenthesis represent the probability that an item takes a
certain weight. The other problem parameters are c = 30, p = 2 and θ = 0.6.

x1=1

x2=0

x3=0

x4=1

x5=1

ω1=10

ω1=8

ω2=9

ω2=12

ω3=8

ω3=13

ω5=12

ω5=15

ω2=9

ω2=12

ω3=8

ω3=13

ω3=8

ω3=13

ω3=8

ω3=13

ω4=4

ω4=6

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω4=4

ω4=6

ω4=4

ω4=6

ω4=4

ω4=6

ω4=4

ω4=6

ω4=4

ω4=6

ω4=4

ω4=6

ω4=4

ω4=6

shortage profit 

0 46

0 46

0 46

1 46

0 46

0 46

0 46

1 46

0 46

0 46

0 46

1 46

0 46

0 46

0 46

1 46

0 46

0 46

0 46

0 46

0 46

0 46

0 46

0 46

0 46

0 46

0 46

0 46

0 46

0 46

0 46

0 46

0.125 46expected

Fig. 2 Scenario tree representing the solution of the single-stage SKP in Example 1



6 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

As discussed, the problem has a single decision stage. This means that ev-
ery decision has to be taken in a proactive way, before any of the random
variables is observed. Therefore the optimal solution can be expressed as a
simple assignment for the decision variables Xi, ∀i ∈ 1, . . . , k. More specif-
ically, the optimal solution for Example 1 proactively selects items {1, 4, 5}
and achieves an expected profit of 45.75. Such a solution can be validated
using a scenario tree, as shown in Fig. 2. This tree considers every possible
future realisation for the random variables ωi, ∀i ∈ 1, . . . , k. Since every ran-
dom variable in the problem takes each of the possible values in its domain
with uniform probability, all the paths in the scenario tree are equally likely.
Therefore, it is easy to compute the expected profit of such an assignment
and the expected additional capacity required. By plugging these values into
the objective function, the profit associated with this solution can be easily
obtained (i.e. 46 − 2 · 0.125 = 45.75). Finally, it can be easily verified that
the chance-constraint in the model is also satisfied by this solution. In fact,
a shortage is observed only in 4 out of 32 scenarios, therefore the chance
constraint is satisfied, in this solution, with probability 0.875 ≥ θ = 0.6.

The problem discussed in the former paragraphs only comprises a single
decision stage. However, in general, stochastic programs may comprise multi-
ple decision stages, that is a sequence of decisions and observations. In order
to clarify this, we slightly modify the SKP presented above in such a way as
to allow for multiple decision stages. Therefore, we introduce the multi-stage
SKP.

Multi-stage Stochastic Knapsack. The single-stage problem descrip-
tion and assumptions are valid here with the exception that the items are
considered sequentially, starting from item 1 up to item k. In other words,
first we take the decision of inserting or not a given object into the knapsack,
then we immediately observe its weight, which is a random variable, before
any further item is taken into account.

A stochastic programming model for the multi-stage SKP is shown in Fig.
3. The model is similar to the one presented in Fig. 1, but the structure
of the objective function is different. In this new model, expectation (Eωi

)
and maxXi

operators are nested and parameterized each by, respectively, the
random variable ωi over which the expectation is computed and the decision
variable Xi that should be assigned in order to maximize the objective func-
tion value. This means, in practice, that an object may be selected or not,
depending on the realized weights for previous objects. The stage structure
is also different, because now the problem comprises multiple decision stages
that alternate decisions and observations according to the arrival sequence of
the objects.

We refer, once more, to the Example 1 presented above. The numerical
data introduced there can be used to obtain an instance of the multi-stage
SKP. As discussed, the problem now has multiple decision stages. This means



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 7

Objective:

maxX1
{r1X1 + Eω1

{maxX2
r2X2 + Eω2

{. . . {maxXk−1
rk−1Xk−1+

Eωk
{maxXk

rkXk + p[
P

k

i=1
ωiXi − c]+}} . . .}}}

Subject to:

Pr
n

P

k

i=1 ωiXi ≤ c
o

≥ θ

Decision variables:

Xi ∈ {0, 1} ∀i ∈ 1, . . . , k

Random variables:

ωi → item i weight ∀i ∈ 1, . . . , k

Stage structure:

Vi = {Xi} ∀i ∈ 1, . . . , k

Si = {ωi} ∀i ∈ 1, . . . , k

L = [〈V1, S1〉, 〈V2, S2〉, . . . , 〈Vk , Sk〉]

Fig. 3 Stochastic programming formulation for the multi-stage SKP

that decisions are taken in a dynamic way, and they are alternated with
observations for random variables. Therefore, the optimal solution is now
expressed by using a solution tree. A solution tree encodes full information
on how to act at a certain decision stage, when some random variables have
been already observed. More specifically, the optimal solution tree for the
instance of the multi-stage SKP defined by the data in Example 1 achieves
an expected profit of 47.75 and it is shown in Fig. 4. To clarify: at the root
node no uncertainty has been unfolded. The optimal solution tree in Fig. 4
shows that it is always optimal to take item 1 in the knapsack. Nevertheless,
depending on the observed value for the weight of item 1, two alternative
decisions may be optimal: not taking item 2 if the observed weight for item
1 is 10; or taking item 2 if the observed weight for item 1 is 8. To reiterate,
since every random variable in the problem takes each of the possible values
in its domain with uniform probability, all the paths in the solution tree are
equally likely. Therefore, it is easy to compute the expected profit of such an
assignment and the expected additional capacity required. By plugging these
values into the objective function, the profit associated with this solution
can be easily obtained. Finally, it can be also easily verified that the chance-
constraint in the model is also satisfied by this solution. In fact, a shortage
is observed only in 12 out of 32 scenarios, therefore the chance constraint is
satisfied, in this solution, with probability 0.625 ≥ θ = 0.6.

In this section we discussed the SKP; in Section 3 we provide a further
list of problems from the literature discussing hybrid approaches to decision
making under uncertainty.



8 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

x1 x2 x3 x4 x5 shortage profit

1 0 57

0 3 57

1 0 57

1 3 57

0 0 37

1 0 37

0 0 37

0 0 37

1 0 57

0 3 57

1 0 57

1 3 57

0 0 37

1 0 37

1 0 0 37

0 37

1 0 57

0 2 57

1 0 57

0 2 57

1 0 57

0 2 57

1 0 57

1 2 57

0 0 48

0 0 48

0 0 48

1 0 48

0 3 48

0 3 48

0 3 48

3 48

 1 49.75

ω1=10

ω1=8

ω2=9

ω2=12

ω3=8

ω3=13

ω4=4

ω4=6

ω5=12

ω5=15

ω2=9

ω2=12

ω3=8

ω3=13

ω3=8

ω3=13

ω3=8

ω3=13

ω4=4

ω4=6

ω4=4

ω4=6

ω4=4

ω4=6

ω4=4

ω4=6

ω4=4

ω4=6

ω4=4

ω4=6

ω4=4

ω4=6

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

ω5=12

ω5=15

expected

Fig. 4 Solution tree for the multi-stage SKP in Example 1

3 A Collection of Stochastic Problems

In this section we provide a list of 9 other problems of decision making under
uncertainty for which hybrid approaches have been proposed in the litera-
ture. This list is comprehensive, in the sense that it contains representative
problems for each hybrid CP-AI-OR approach for decision making under un-
certainty surveyed in this work.

The problems are:



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 9

• Stochastic queueing control problem [8, 75, 74]
• Scheduling Conditional Task Graphs [40]
• Stochastic reservation [5]
• Job shop scheduling with probabilistic durations [3]
• Two-stage stochastic matching problem [33]
• Production/inventory management [78]
• Stochastic template design [52, 71]
• Scheduling internal audit activities [60]
• Stochastic sequencing with release times and deadlines [57].

For each of these problems we provide a textual description; the reader may
refer to the respective works where these problems were first introduced to
obtain a more detailed description. In Section 5 we discuss and classify the
hybrid solution methods proposed for modeling and solving these problems.

3.1 Stochastic Queueing Control Problem

In a facility with front room and back room operations, the aim is to switch
workers between the rooms in order to cope with changing customer demand.
Customer arrival and service time are stochastic and the decision maker seeks
a policy for switching workers such that the expected customer waiting time
is minimized, while the staff in the back room remains sufficient to perform
all work. The problem was originally proposed and analyzed in [8]. Terekhov
and Beck investigated it in [75, 74].

3.2 Scheduling Conditional Task Graphs

This is the problem, discussed in [40], of scheduling conditional task graphs
in presence of unary and cumulative resources, minimizing the expected
makespan. Conditional task graphs are directed acyclic graphs containing
activities linked by precedence relations. Some of the activities represent
branches. At run time only one of the successors of a branch is chosen for
execution, depending on the occurrence of a condition labeling the corre-
sponding arc. Since the truth or the falsity of those conditions is not known
a priori, the problem is stochastic. Therefore all the possible future scenarios
must be taken into account while constructing the schedule.



10 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

3.3 Stochastic Reservation

This problem, introduced in [5], is a particular application of the stochastic
multi-knapsack problem. A travel agency may aim at optimizing the reser-
vation of holiday centers during a specific week with various groups in the
presence of stochastic demands and cancellations. The requests are coming
according a given probability distribution and they are characterized by the
size of the group and the price the group is willing to pay. The requests cannot
specify the holiday center. However, the travel agency, if it accepts a request,
must inform the group of its destination and must commit to it. Groups can
also cancel the requests at no cost. Finally, the agency may overbook the
centers, in which case the additional load is accommodated in hotels at a
fixed cost.

3.4 Job Shop Scheduling with Probabilistic Duration

This problem was originally proposed in [3]. The problem is a classic Job
Shop Scheduling (JSP) (see [23], p. 242) in which the objective is to find
the minimum makespan. In contrast to the classic formulation for the JSP
presented in [23] the authors assume, in this case, that the job durations
are probabilistic. The objective is therefore accordingly modified to account
for uncertainty: the authors search for a proactive plan, consisting of a par-
tial order among activities and of resource-activity allocations, which attains
the lowest possible makespan with probability greater or equal to a given
threshold.

3.5 Two-stage Stochastic Matching Problem

We consider the minimum cost maximum bipartite matching problem dis-
cussed in [33]. The task is to buy edges of a bipartite graph which together
contain a maximum-cardinality matching in the graph. The problem is for-
mulated as a two-stage stochastic program with recourse, therefore edges can
be bought either during the first stage, or with a recourse action after un-
certainty has been resolved. There are two possible variants of this problem.
In the first, the uncertainty is in the second stage edge-costs, that is the cost
of an edge can either increase or decrease in the second stage. In the second
variant all edges become more expensive in the second stage, but the set of
nodes that must be matched is unknown. This problem can model real-life
stochastic integral planning problems such as commodity trading, reservation
systems and scheduling under uncertainty.



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 11

3.6 Production/Inventory Management

Uncertainty plays a major role in production and inventory management.
In this simplified production/inventory planning example there are a single
product, a single stocking point, production capacity constraints, service level
constraints and a stochastic demand. The objective is to find a replenishment
plan associated with the minimum expected total cost. The cost components
taken into account are inventory holding costs and fixed replenishment (or
setup) costs. The optimal plan gives the timing of the replenishments as well
as the order quantities, which depend upon the previously realized demand.
This production/inventory management problem has been investigated in [71,
78]. In [69] the authors investigate the same problems under the assumption
that the production capacity constraints are relaxed.

3.7 Stochastic Template Design

The deterministic template design problem (prob002 in CSPLib2) is described
as follows. We are given a set of variations of a design, with a common shape
and size and such that the number of required pressings of each variation is
known. The problem is to design a set of templates, with a common capacity
to which each must be filled, by assigning one or more instances of a variation
to each template. A design should be chosen that minimises the total number
of runs of the templates required to satisfy the number of pressings required
for each variation. As an example, the variations might be for cartons for
different flavours of cat food, such as fish or chicken, where ten thousand fish
cartons and twenty thousand chicken cartons must be printed. The problem
would then be to design a set of templates by assigning a number of fish
and/or chicken designs to each template such that a minimal number of
runs of the templates is required to print all thirty thousand cartons. Proll
and Smith [55] address this problem by fixing the number of templates and
minimising the total number of pressings. In the stochastic version of the
problem [52] the demand for each variation is uncertain. In compliance with
production/inventory theory, the authors incorporate two conventional cost
components: scrap cost, incurred for each template that is produced in excess
of the realized demand, and shortage cost, incurred for each unit of demand
not fulfilled. The objective is then to minimize the expected total cost.

2 http://www.csplib.org



12 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

3.8 Scheduling Internal Audit Activities

Based on costs and benefits that change over time, the focus of the inter-
nal audit scheduling problem is how often to conduct an internal audit on
an auditable unit. Auditable units are the units upon which internal control
procedures are applied, in order to safeguard assets and assure the reliabil-
ity of information flows. The problem, originally introduced in [60], can be
stated as follows. We consider a planning horizon comprising of N time pe-
riods. We are given a set of M audit units over which random losses may
accrue over time. Losses in each period are assumed to have a known prob-
ability mass function that could easily be estimated from available historical
data. The distribution of losses may vary from period to period, i.e., it is
non-stationary. Losses at different periods are assumed to be independent.
Auditing is a time-consuming task, and the auditing team is given a strict
deadline for performing an audit. Specifically, an audit must be completed in
T time periods. Therefore after T periods the accrued losses drop to zero. If
a team has already started auditing a unit at a given time period, then no
other audit can be initiated during this period for the given audit team. The
timing of audits are fixed once and for all at the beginning of the planning
horizon and cannot be changed thereafter, even if it is suspected that certain
auditable units have accrued unexpected losses. The objective is to find the
optimal audit schedule while respecting the maximum loss criteria. That is,
the invariant audit cost (i.e., fixed audit costs incurred each time an audit is
conducted) and expected total discounted audit losses (i.e., cumulative losses
accrued at the end of each period) are minimized by satisfying a minimum
probability α that the losses will not exceed a predetermined level (allowed
maximum loss) in any given audit period for any auditable unit.

3.9 Stochastic Sequencing with Release Times and
Deadlines

The problem, introduced in [57], consists in finding an optimal schedule to
process a set of orders using a set of parallel machines. The objective is to
minimize the expected total tardiness of the plan. Processing an order can
only begin after its release date and should be completed at the latest by a
given due date for such an order. An order can be processed on any of the
machines. The processing time of a given order, when processed on a certain
machine, is a random variable. A solution for this problem consists in an
assignment for the jobs on the machines and in a total order between jobs
on the same machine. A job will be processed on its release date if no other
previous job is still processing, or as soon as the previous job terminates.



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 13

4 Frameworks for Decision Making Under Uncertainty

in CP and AI

In Section 2 we introduced SP, a well established OR framework for de-
cision making under uncertainty. In this section, we introduce other exist-
ing frameworks for decision making under uncertainty from, respectively,
AI and CP. Stochastic Boolean Satisfiability extends a well established AI
modeling framework, Propositional Satisfiability, by considering uncertainty.
Probabilistic CSP, Event-Driven Probabilistic Constraint Programming and
Stochastic Constraint Programming set the scene for dealing with uncertainty
in CP. Where appropriate, we describe connections and similarities among
these different frameworks.

4.1 Stochastic Boolean Satisfiability

The Boolean Satisfiability (SAT) community have investigated problems in-
volving uncertainty, with the Stochastic Satisfiability (SSAT) framework.
SSAT aims to combine features of logic and probability theory, and has been
applied to probabilistic planning, belief networks and trust management. We
base our discussion on a recent survey [43].

4.1.1 Definitions

The SAT problem is to determine whether a Boolean expression has a satis-
fying labelling (set of truth assignments). The problems are usually expressed
in conjunctive normal form: a conjunction of clauses c1 ∧ . . .∧ cm where each
clause c is a disjunction of literals l1 ∨ . . . ∨ ln and each literal l is either
a Boolean variable v or its negation v̄. A Boolean variable can be labelled
true (T ) or false (F ). Many constraint problems can be SAT-encoded (mod-
elled as a SAT problem) and vice-versa. In fact any SAT problem can be
viewed as a Constraint Satisfaction Problem (CSP) with binary domains and
non-binary constraints via the non-binary encoding [77]: for example a clause
a∨b∨ c̄ corresponds to the constraint (or conflict) preventing the assignments
{a ← F, b ← F, c ← T }. The SSAT terminology is somewhat different than
that of SP but there are many correspondences.

An SSAT problem Φ = Q1v1 . . . Qnvnφ is specified by:

• a prefix Φ = Q1v1 . . .Qnvn that orders the Boolean variables v1 . . . vn of
the problem and quantifies them. Each variable vi is quantified by its
quantifier Qi either as existential (∃) or randomised (

R

);
• a matrix φ: a Boolean formula containing the variables, usually in con-

junctive normal form (CNF).



14 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

An existential variable is a standard SAT variable (corresponding to a deci-
sion variable in SP), while a randomised variable vi is a Boolean variable that
is true with associated probability πi (corresponding to a random variable in
SP). Sequences of similarly quantified variables may be grouped together into
(existential or randomised) blocks , and an SP stage corresponds to an existen-
tial block followed by a randomised block. The values of existential variables
may be contingent on the values of (existential or randomised) variables ear-
lier in the prefix, so an SSAT solution takes the form of an assignment tree

(corresponding to the solution tree in SP) specifying an assignment to each
existential variable for each possible instantiation of the randomised vari-
ables preceding it in the prefix. An optimal assignment tree is one that yields
the maximum probability of satisfaction; alternatively, the decision version
of SSAT asks whether the probability of satisfaction exceeds a threshold θ.

SSAT is simpler than a Stochastic Program in three ways: the variable do-
mains are Boolean only (as in SAT), the constraints (clauses) are of a fixed
type (as in SAT), and no distinction is made between scenarios in which dif-
ferent clauses are violated. The latter means that SSAT is akin to a stochastic
program with a single chance-constraint.

4.1.2 Restrictions and Generalizations

Some special cases have been identified in the literature: if all variables are
randomised then we have a MAJSAT problem; if the prefix has only an ex-
istential block followed by a randomised block then we have an E-MAJSAT
problem; and if each block contains a single variable then we have an Alter-
nating SSAT (ASSAT) problem. SSAT has also been extended by the addition
of universal quantifiers (∀) to give Extended SSAT (XSSAT). A formula ∀vφ

must be true for both v = T and v = F . XSSAT subsumes Quantified Boolean
Formulae (QBF), which is the archetypal PSPACE-complete problem: QBF
is XSSAT without randomised quantifiers.

4.2 Probabilistic Constraint Satisfaction Problems

The Probabilistic CSP framework, proposed in [19], is an extension of
the CSP framework [1] that deals with some decisions problems under
uncertainty. This extension relies on a differentiation between the agent-
controllable decision variables and the uncontrollable parameters whose val-
ues depend on the occurrence of uncertain events. The uncertainty on the
values of the parameters is assumed to be given under the form of a proba-
bility distribution.



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 15

4.2.1 Definitions

A probabilistic CSP is a CSP equipped with a partition between (control-
lable) decision variables and (uncontrollable) parameters, and a probability
distribution over the possible values of the parameters. More specifically,
the authors define a Probabilistic CSP as a 6-tuple P = 〈Λ, W, X, D, C, pr〉,
where Λ = {λ1, . . . , λp} is a set of parameters; W = W1 × · · · ×Wp, where
Wi is the domain of λi; X = {x1, . . . , xn} is a set of decision variables;
D = D1 × . . .×Dn, where Di is the domain of xi; C is a set of constraints,
each of them involving at least one decision variable; and pr : W → [0, 1] is
a probability distribution over the parameter assignments. Constraints are
defined as in classical CSP. A complete assignment of the parameters (resp.
of the decision variables) is called a “world” (resp. a “decision”).

The authors consider successively two assumptions concerning the agents
awareness of the parameter values at the time the decision must imperatively
be made.

• “No more knowledge”: the agent will never learn anything new before the
deadline for making a decision; all it will ever know is already encoded by
the probability distribution.

• “Complete knowledge”: the actual parameters will be completely revealed
before the deadline is reached (possibly, just before), so that it it useful
to the agent to compute off-line a ready-to-use conditional decision, that
the agent will be able to instantiate on-line, as soon as it knows what the
actual parameters are.

For the first case, a solution is an unconditional decision that is most likely
to be feasible according to world probabilities. For the second case, a solution
provides a set of decisions with their conditions of applicability — i.e. under
which world(s) a given decision should be used — together with the likelihood
of occurrence of these conditions, which also follows from world probabilities.

4.3 Event-driven Probabilistic Constraint
Programming

In Event-driven Probabilistic Constraint Programming (EDP-CP), which is
an extension of the Probabilistic CSP framework, some of the constraints
can be designated by the user as event constraints. The user’s objective is
to maximize his/her chances of realizing these “events”. In each world — as
defined in the Probabilistic CSP framework — events are subject to certain
pre-requisite constraints and to certain conditions. If a pre-requisite is un-
satisfied in a given world then the event is also classed as unsatisfied in that
world; and if a condition is unsatisfied in a world then the event is classed
as satisfied in that scenario. Intuitively, this means that in EDP-CP it is



16 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

possible to express the fact that the feasibility of certain event constraints
may depend on the satisfaction of other constraints (denoted as “pre-requisite
constraints”) under certain “conditions”. In order to model such situations,
a new meta-constraint — the dependency meta-constraint — is introduced.

4.3.1 Definitions

An EDP-CP is a 9-tuple P = 〈X ,D,Λ,W , E , C,H, Ψ, Pr〉 where:

• X = {x1, . . . , xn} is a set of decision variables;
• D = D1 × . . .×Dn, where Di is the domain of Xi;
• Λ = {λ1, . . . , λl} is a set of uncertain parameters;
• W= W1 × . . .×Wl, where Wi the domain of λi;
• E = {e1, . . . , em} is a set of event constraints. Each ei may either be

probabilistic (involving a subset of X and a subset of Λ) or deterministic
(involving only a subset of X );

• C = {c1, . . . , co} is a set of dependency meta-constraints. For each depen-
dency meta-constraint ci : Dependency(e, p, f) we have e ∈E , where p

may be either a probabilistic or a deterministic pre-requisite constraint,
and f is a deterministic condition constraint;

• H= {h1, . . . , hp} is a set of hard constraints. Each hi may either be prob-
abilistic (involving a subset of X and a subset of Λ) or deterministic (in-
volving only a subset of X );

• Ψ is any expression involving the event realization measures on the event
constraints in E ;

• Pr : W → [0, 1] is a probability distribution over uncertain parameters.

An optimal solution to an EDP-CP P = 〈X ,D,Λ,W , E , C,H, Ψ, Pr〉 is any
assignment S to the decision variables such that:

1. the hard constraints are satisfied in each possible world; and
2. there exists no other assignment satisfying all the hard constraints with

a strictly better value for Ψ , according to the Dependency constraints
introduced in the model.

4.3.2 Relations to Other Frameworks

The Event-driven Probabilistic Constraint Programming (EDP-CP) frame-
work, proposed in [67], extends both the Probabilistic CSP framework [19]
and the Dependent-chance Programming framework [38]. In contrast to prob-
abilistic CSP, which treats all probabilistic constraints uniformly, EDP-CP
distinguishes between event, pre-requisite, condition, and hard constraints.
Furthermore, in Dependent-chance Programming a feasible solution satisfies
all event constraints, whilst in EDP-CP such a requirement is relaxed. This
gives the decision-maker more flexibility in modeling. Finally, the notion of



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 17

constraint dependency introduced in [67] comprises condition constraints, in
addition to the event and pre-requisite constraints. As the authors remark,
constraint dependency without condition constraints does not guarantee opti-
mal plans since in certain instances common variables may take values which
break the link between two dependent constraints.

4.4 Stochastic Constraint Programming

Stochastic Constraint Programming (SCP) was first introduced in [78] in
order to model combinatorial decision problems involving uncertainty and
probability. According to Walsh, SCP combines together the best features of
CP (i.e. global constraints, search heuristics, filtering strategies, etc.), of SP
(expressiveness in representing problems involving random variables), and of
Stochastic Satisfiability.

4.4.1 Definitions

An m-stage Stochastic Constraint Satisfaction Problem (SCSP) is defined,
according to [78], as a 7-tuple 〈V, S, D, P, C, θ, L〉3, where V is a set of deci-
sion variables and S is a set of random variables, D is a function mapping
each element of V and each element of S to a domain of potential values.
In what follows we assume that both decision and random variable domains
are finite. P is a function mapping each element of S to a probability dis-
tribution for its associated domain. C is a set of chance-constraints over a
non-empty subset of decision variables and a subset of random variables. θ is
a function mapping each chance-constraint h ∈ C to θh which is a threshold
value in the interval (0, 1], indicating the minimum satisfaction probability
for chance-constraint h. Note that a chance-constraint with a threshold of
1 (or without any explicit threshold specified) is equivalent to a hard con-
straint. L = [〈V1, S1〉, . . . , 〈Vi, Si〉, . . . , 〈Vm, Sm〉] is a list of decision stages

such that each Vi ⊆ V , each Si ⊆ S, the Vi form a partition of V , and the Si

form a partition of S.
To solve an m-stage SCSP an assignment to the variables in V1 must be

found such that, given random values for S1, assignments can be found for V2

such that, given random values for S2, . . ., assignments can be found for Vm

so that, given random values for Sm, the hard constraints are satisfied and
the chance constraints are satisfied in the specified fraction of all possible
scenarios. The solution of an m-stage SCSP is represented by means of a

3 The original formulation, proposed in [78], does not directly encode the stage structure
in the tuple and actually defines a SCSP as a 6-tuple; consequently the stage structure is
given separately. We believe that a more adequate formulation is the one proposed in [30],
that explicitly encodes the stage structure as a part of the tuple, giving a 7-tuple.



18 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

Objective:

max



P

k

i=1
riXi − pE

h

P

k

i=1
ωiXi − c

i+
ff

〈V, S, D, P, C, θ, L〉:
V = {X1, . . . , Xk}
S = {ω1, . . . , ωk}
D = {X1, . . . , Xk ∈ {0, 1}, D(ω1), . . . , D(ωk)}
P = {PDF (ω1), . . . , PDF (ωk)}

C =
n

Pr
n

P

k

i=1
ωiXi ≤ c

o

≥ θ
o

L = [〈{X1, . . . , Xk}, {ω1, . . . , ωk}〉]

Fig. 5 Stochastic Constraint Programming formulation for the single-stage SKP

policy tree. A policy tree is a set of decisions where each path represents a
different possible scenario and the values assigned to decision variables in this
scenario. The policy tree, in fact, corresponds to the solution tree adopted in
SP.

Let S denote the space of policy trees representing all the solutions of a
SCSP. We may be interested in finding a feasible solution, i.e. a policy tree
s ∈ S, that maximizes the value of a given objective function f(·) over a set

Ŝ ⊆ S of random variables (edges of the policy tree) and over a set V̂ ⊆ V

of the decision variables (nodes in the policy tree). A stochastic constraint

optimization problem (SCOP) is then defined in general as maxs∈S f(s).
Unlike SP, SCP offers a richer modeling language which supports chance-

constraints over global, nonlinear, and logical constraints in addition to linear
ones.

It is easy to reformulate the running example discussed in Section 2 (SKP)
as a single-stage SCOP, the respective model is given in Fig. 5. As in the SP
model, in the SCP model we have sets of decision and random variables with
their respective domains. For the random variables the respective probability
mass function is specified. There is a chance-constraint with an associated
threshold θ. In fact, the SCOP in Fig. 5 fully captures the structure of the
stochastic program in Fig. 1.

5 A Classification of Existing Approaches

In previous sections we stressed the fact that this survey is centered on “un-
certainty”, and we also clarified the precise meaning we associate with the
term uncertainty. Other literature surveys tend to merge uncertainty with
other concepts; in Section 9 we will briefly discuss related works in these
different areas, and the reader may refer to these surveys for more details.
Furthermore, there exist surveys that are more explicitly focused on pure AI



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 19

[10] or OR [62] techniques, but little attention has been dedicated so far to
hybrid techniques.

In this section, we propose a classification for existing hybrid approaches
and frameworks that blend CP, AI and OR for decision making under un-
certainty. The integration of CP, AI and OR techniques for decision making
under uncertainty is a relatively young research area. We propose to classify
existing approaches in the literature within three main classes (Fig. 10).

Hybrid Approaches
in Decision Making
under Unceratinty

Reformulation-based Sample-basedSearch & filtering
based on
stochastic reasoning

Fig. 6 A classification of hybrid approaches in CP-AI-OR for decision making under
uncertainty

• The first class comprises those approaches that perform some form of
“stochastic reasoning” by using dedicated — general or special purpose —
search procedures, filtering algorithms, neural networks, genetic algorithms
etc.

• The second class, in contrast, includes approaches that exploit reformula-
tion — once again employing either a specialized analytical derivation for
a given problem, or general purpose techniques — in order to produce a
deterministic model that can be solved using existing solvers.

• Finally, the third class comprises incomplete approaches that exploit sam-
pling in order to attain a near-optimal solution for problems of optimiza-
tion under uncertainty. We believe that approaches based on sampling are
particularly attractive and deserve a dedicated class. In fact, a high level
of complexity is a typical trait of decision problems involving uncertainty,
therefore it seems that the only feasible way of tackling many of these
problems consists in developing effective approximation strategies.

Before discussing further this classification, it is worth mentioning that we be-
lieve it would be impractical to list all existing applications of hybrid methods
from CP, AI, and OR in decision making under uncertainty. For this reason
we aim rather to classify the different strategies — and not the specific ap-
plications — adopted in the literature for solving this class of problems using
hybrid approaches. Nevertheless, for each strategy mentioned in this section,
we will report some of the respective applications.



20 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

In Section 6, we will discuss approaches performing “stochastic reasoning”;
in Section 7 we will discuss approaches that exploit reformulation; and finally
in Section 8 we will discuss incomplete approaches that exploit sampling.

6 Approaches Based on Stochastic Reasoning

In this section we will analyze existing approaches that perform some sort of
“stochastic reasoning” by using dedicated — general or special purpose —
techniques. These techniques take several different forms: search procedures,
filtering algorithms, neural networks, genetic algorithms etc.

Firstly, we shall distinguish between general purpose and problem specific

strategies (Fig. 7).

Hybrid Approaches
in Decision Making
under Unceratinty

Reformulation-based Sample-basedSearch & filtering
based on
stochastic reasoning

General purpose strategies:
- Probabilistic CSP
- Stochastic CP
- Evolved Parameterised Policies
- Stochastic SAT

Problem specific strategies:
Complete
- Scheduling conditional task graphs
- Computing optimal R,S policy parameters under

service level constraints
- Computing optimal R,S policy parameters under

penalty cost scheme

Approximate
- Cost-based filtering for stochastic inventory control
- Evolutionary search for replenishment cycle policies
- Neuroevolutionary Inventory Control

Fig. 7 A classification of hybrid approaches in CP-AI-OR for decision making under
uncertainty: approaches based on stochastic reasoning

General purpose strategies aim to develop frameworks that provide model-
ing and solving facilities to handle generic problems of decision making under
uncertainty. The modeling frameworks proposed in the literature typically ag-
gregate concepts from different domains, for instance global constraints from
CP, chance-constraints and random variables from SP (OR). These frame-



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 21

works exploit well established AI strategies, such as forward checking proce-
dures and genetic algorithms, in the solution process.

Problem specific strategies typically develop specialized reasoning algo-
rithms that, during the search, are able to perform inference by exploiting
the specific structure of the problem. For instance a typical approach is to
encapsulate the reasoning within a dedicated global constraint that prunes
decision variable domains according to the underlying stochastic reasoning.

In addition, both general purpose and problem specific strategies may be
complete or heuristic. We shall now discuss in more detail these two different
classes of approaches based on stochastic reasoning, by providing pointers to
works in the literature.

6.1 General Purpose Strategies

We survey four different general purpose strategies for modeling and solving
different classes of problems of decision making under uncertainty. These
are: Probabilistic CSP, Stochastic CP, Evolving Parameterised Policies, and
Stochastic SAT.

6.1.1 Probabilistic CSP.

One of the first general purpose frameworks for modeling uncertainty in CP
is the Probabilistic CSP [19]. In the Probabilistic CSP a distinction is made
between controllable and uncontrollable variables which correspond, respec-
tively, to decision and random variables in SP. As in SP, a probability density
function is associated with each uncontrollable variable. The authors discuss
two different settings. Under the first of these settings, for each of the possible
realizations that may be observed for the uncontrollable variables, the best
decision is determined. This strategy corresponds to the wait-and-see policy
in SP ([32], pp. 8) and it presents a posterior analysis. The second setting
simply corresponds to a conventional single stage stochastic program where
an optimal decision has to be taken before observing the realized values for
the uncontrollable variables. The optimal decision, in this second case, is the
one that guarantees the maximum likelihood to result feasible with respect
to the given probability density functions for the uncontrollable variables.

The authors propose two algorithms for solving Probabilistic CSPs. The
first algorithm, used for solving problems formulated under the first setting
discussed, borrows ideas from solution methods developed in for solving Dy-
namic CSPs [18] and, in particular, reuses a procedure proposed in [21]. The
second proposed algorithm consists of a depth first branch and bound al-
gorithm and of a forward checking procedure. These are employed to solve
problems formulated under the second setting discussed.



22 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

6.1.2 Stochastic Constraint Programming.

The Probabilistic CSP represents the first attempt to include random vari-
ables, and thus uncertainty, within the CP framework. Nevertheless, only in
[78] is a clear link established between CP and SP with the introduction of
SCP. We have already discussed in detail SCP as a modeling framework in
Section 4.4. In [78] Walsh discusses the complexity of Stochastic CSPs, and
proposes a number of complete algorithms and of approximation procedures
for solving them. Namely, a backtracking algorithm and a forward checking
procedure are proposed, which resemble those proposed in [19] for Probabilis-
tic CSPs. Nevertheless, we want to underscore the fact that the key difference
between a Probabilistic CSP and a Stochastic CSP is the fact that the former
does not handle multiple decision stages.

In [2] Balafoutis et al. build on the SCP framework introduced in [78], they
correct a flaw in the original forward checking procedure for Stochastic CSPs
and they also extend this procedure in order to better take advantage of prob-
abilities and thus to achieve stronger pruning. In addition, arc-consistency is
defined for Stochastic CSPs and an arc-consistency algorithm able to han-
dle constraint of any arity is introduced. Tests are carried on random binary
Stochastic CSPs formulated as single and multi-stage problems.

In [13] Bordeaux and Samulowitz investigate two extensions to the orig-
inal SCP framework. Firstly, they investigate situations in which variables
are not ordered sequentially, corresponding to situations in which the future
can follow different branches; they show that minor modifications allow the
framework to deal with non-sequential forms. Secondly, they investigate how
to extend the framework in such a way as to incorporate multi-objective deci-
sion making. An algorithm is proposed, which solves multi-objective stochas-
tic constraint programs in polynomial space.

Global chance-constraints — which we discussed in Section 4.4 — were in-
troduced first in [58], and they bring together the reasoning power of global
constraints from CP and the expressive power of chance-constraints from SP.
A general purpose approach for filtering global chance-constraints is proposed
in [30]. This approach is able to reuse existing propagators available for the re-
spective deterministic global constraint which corresponds to a given global
chance-constraint when all the random variables are replaced by constant
parameters. In addition, in [57] Rossi et al. discuss some possible strate-
gies to perform cost-based filtering for certain classes of Stochastic COPs.
These strategies exploit well-known inequalities borrowed from SP and used
to compute valid bounds for any given Stochastic COP that respects some
mild assumptions. Examples are given for a simplified version of the stochas-
tic knapsack problem previously discussed and for the stochastic sequencing
problem discussed in Section 3.9.



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 23

6.1.3 Evolved Parameterised Policies.

Inspired by the success of machine learning methods for stochastic and adver-
sarial problems, a recent approach to Stochastic CSPs/COPs called Evolved

Parameterised Policies (EPP) is described in [53]. Instead of representing
a policy explicitly in a Stochastic Constraint Program, an attempt is made
to find a rule that decides, at each decision stage, which domain value to
assign to the decision variable(s) at that stage. The quality of a rule can be
determined by constructing the corresponding policy tree and observing the
satisfaction probability of each chance constraint (and the value of the ob-
jective function if there is one). Evolutionary or other non-systematic search
algorithms can be used to explore the space of rules.

EPP treats a Stochastic CSP/COP problem as an unconstrained noisy
optimisation problem with at worst the same number of (real-valued) vari-
ables. This allows a drastic compression of the policy tree into a small set of
numbers, and this compression together with the use of evolutionary search
makes EPP scalable to large multi-stage Stochastic CSPs/COPs. It has the
drawback that only policies of a relatively simple form can be discovered,
but it results much more robust than a scenario-based approach on a set of
random multi-stage problems [53]. Moreover, arbitrarily complex rules could
be discovered by using artificial neural networks instead of these simple func-
tions, a neuroevolutionary approach that has been successfully applied to
many problems in control [24, 29, 64].

6.1.4 Stochastic SAT.

Another general purpose framework for modeling and solving a well estab-
lished class of problems under uncertainty in AI — and especially in plan-
ning under uncertainty — is Stochastic SAT. We introduced the modeling
framework in Section 4.1. Current SSAT algorithms fall into three classes:
systematic, approximation, and non-systematic.

The systematic algorithms are based on the standard SAT backtrack-
ing algorithm — the Davis-Putnam-Logemann-Loveland (DPLL) algorithm
[17, 16] — and correspond roughly to some current SCSP algorithms. The
first such algorithms were described in [36], in particular the evalssat al-
gorithm for XSSAT which formed the basis for future systematic SSAT al-
gorithms. evalssat did not use branching heuristics as in current SAT and
CSP solvers, though [36] also used some restricted branching heuristics, but
assigned variables in the order specified by the prefix. However, it did use
SAT-based techniques (unit propagation and pure variable elimination) and
reasoning on the probability threshold θ to prune the search tree. The policy-
based SCSP algorithm of [78] is essentially evalssat with forward checking.
Systematic algorithms have also been devised for special cases of XSSAT.



24 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

MAXPLAN [45], ZANDER [46] and DC-SSAT [44] all use special techniques
for planning problems modelled as XSSAT problems.

The sampleevalssat approximation algorithm uses random sampling to
select paths, then uses SAT techniques to search the restricted tree to max-
imise θ. The APPSSAT algorithm [42] considers scenarios in decreasing order
of probability to construct a partial tree for the special case of planning
problems modelled as SSAT problems.

The randevalssat algorithm [36] is based on the sampleevalssat algo-
rithm mentioned above, but applies stochastic local search to the existential
variables in a random set of scenarios, thus it is non-systematic. Other ways
of applying local search were described in [41], including periodically restart-
ing randevalssat with different sampled scenarios, an approach used by the
WALKSSAT algorithm [79].

6.2 Problem Specific Strategies

In the previous section we discussed general purpose solution methods that
bring together CP, AI and OR techniques for decision making under uncer-
tainty. We will now discuss some special purpose approaches proposed in the
literature that perform stochastic reasoning on specific problems.

6.2.1 Scheduling Conditional Task Graphs.

The work of [40] describes a complete, special purpose approach that concerns
the problem — discussed in Section 3.2 — of scheduling conditional task
graphs. Similarly to the approach in [56], the authors propose an analytical
formulation of the stochastic objective function, in this case based on the task
graph analysis, and a conditional constraint able to handle such a formulation
efficiently. The authors show the benefit of such an approach by comparing
the results with a deterministic model, which disregards uncertainty, and
with a scenario-based formulation [71] that requires an exponential number
of scenarios to fully represent the stochastic objective function.

6.2.2 Computing Optimal R,S Policy Parameters Under Service
Level Constraints.

Another special purpose strategy is presented in [58], and proposes a dedi-
cated global chance-constraint for computing replenishment cycle inventory
policy parameters under service level constraints. More specifically, the prob-
lem considered in this work is the production/inventory problem described
in Section 3.6. Computing optimal replenishment cycle policy parameters for



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 25

such a problem is a complex task [69]. By using a dedicated global chance-
constraint the authors were able to perform the complex stochastic reasoning
required to compute optimal replenishment cycle policy parameters. Such a
complete algorithm performs a numerical integration step in order to com-
pute the real service level provided in each period by a given set of policy
parameters and the associated expected total cost.

6.2.3 Computing Optimal R,S Policy Parameters Under a
Penalty Cost Scheme.

Similarly, a dedicated global constraint has been proposed in [56] in order
to solve to optimality the problem of computing optimal replenishment cycle
policy parameters under a penalty cost scheme. Such a problem has been
investigated in [70], but in this work the authors could only solve the problem
in a heuristic way, by employing a piecewise linear approximation of the
convex cost function in the problem in order to build up a deterministic
equivalent MIP model. In [56] the authors were able to embed a closed-
form non-linear analytical expression for such a convex cost function within
a global constraint, thus obtaining a complete model able to compute optimal
replenishment cycle policy parameters.

6.2.4 Cost-based Filtering for Stochastic Inventory Control.

The work in [68] has a different flavor. In this case, the underling model is the
deterministic equivalent CP formulation proposed in [73] for computing near-
optimal replenishment cycle policy parameters under service level constraints.
The CP formulation was originally proposed as a reformulation of the MIP
model in [69]. Such a reformulation showed significant benefits in terms of
efficiency. The authors, in [68], propose three independent cost-based filtering
strategies that perform stochastic reasoning and that are able to significantly
speed up the search when applied to the original CP model in [73].

6.2.5 Evolutionary Search for Replenishment Cycle Policies.

A recent application of a genetic algorithm to a multi-stage optimisation
problem in inventory control is described in [51]. Each chromosome repre-
sents a replenishment cycle policy plan as a list of order-up-to levels, with a
level of 0 representing no order, and the fitness of a chromosome is averaged
over a large number of scenarios. This approach is enhanced in [50] by hy-
bridising the genetic algorithm with the SARSA temporal difference learning
algorithm [61]. This is shown to greatly improve the performance of genetic



26 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

search for replenishment cycle policies, both with and without order capacity
constraints.

6.2.6 Neuroevolutionary Inventory Control.

One may evolve an artificial neural network to optimally control an agent in
an uncertain environment. The network inputs represent the environment and
its outputs the actions to be taken. This combination of evolutionary search
and neural networks is called neuroevolution. A recent paper [54] applies
neuroevolution to find optimal or near-optimal plans in inventory control,
following no special policy. The problems are multi-stage and involve multi-
echelon systems (they have more than one stocking point). Such problems
have no known optimal policy and rapidly become too large for exact solution.
The inputs to the network are the current stock levels and the outputs are
the order quantities.

7 Reformulation-based Approaches

In this section, we will analyze existing approaches that are based on a re-
formulation that produces a deterministic model, which can be solved using
an existing solver.

Once more, we shall distinguish between general purpose and problem spe-

cific strategies (Fig. 8).
Hybrid general purpose reformulation strategies have recently appeared

especially at the borderline between CP and OR. These typically take the
form of a high level language — such as Stochastic OPL — used to formulate
the problem under uncertainty, and of a general purpose compiler that can
handle the high level stochastic model and produce a compiled deterministic
equivalent one. Often, the compilation relies on a well known technique in SP:
scenario-based modeling. In addition, due to the complexity of stochastic pro-
grams in general, approximation strategies are often proposed in concert with
these general purpose frameworks in order to make the size of the compiled
model manageable.

In contrast, problem specific strategies aim to fully exploit the structure
of the problem in order to produce a deterministic — and possibly equivalent
— model that can be handled efficiently by existing solver. In many cases, in
order to obtain a model that is manageable by existing solvers, it is necessary
to introduce some assumptions that affect the completeness and, thus, the
quality of the solution found the the deterministic model. We will provide
examples of applications in which a special purpose deterministic equivalent
model is built, which is equivalent to the original model and also examples in



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 27

Hybrid Approaches
in Decision Making
under Unceratinty

Reformulation-based Sample-basedSearch & filtering
based on
stochastic reasoning

General purpose strategies:
- Scenario-based Stochastic CP
- Event-Driven Probabilistic CP

Problem specific strategies:
Complete
- Stochastic queueing control problem
- A stochastic allocation and scheduling problem
- Scheduling internal audit units

Approximate
- Job shop scheduling problem with probabilistic durations
- Production/inventory control problem
- Local search for stochastic template design

Fig. 8 A classification of hybrid approaches in CP-AI-OR for decision making under
uncertainty: approaches based on a deterministic reformulation

which the deterministic model can only approximate the original stochastic
model.

7.1 General Purpose Strategies

We survey two different general purpose strategies based on reformulation
for modeling and solving classes of problems of decision making under un-
certainty. These are Scenario-based Stochastic CP and Event-Driven Proba-
bilistic Constraint Programming.

7.1.1 Scenario-based Stochastic Constraint Programming.

The first general purpose framework based on reformulation that we present is
Scenario-based Stochastic Constraint Programming, which was proposed by
Tarim et al. in [71]. The novelty in this work is the fact that the authors adopt
a semantics for stochastic constraint programs based on scenario trees. By
using this semantics the authors can compile stochastic constraint programs
into conventional (non-stochastic) constraint programs and they can therefore
use existing constraint solvers to effectively solve this class of problems.



28 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

In a scenario based approach — frequently used in SP [11] — a scenario
tree is generated which incorporates all possible realizations of discrete ran-
dom variables into the model explicitly. A path from the root to an extremity
of the event tree represents a scenario. With each scenario a given probability
is associated. Within each scenario we have a conventional (non-stochastic)
constraint program to solve. All we need to do is replace the random vari-
ables by the values taken in the scenario, and ensure that the values found for
the decision variables are consistent across scenarios, as certain decision vari-
ables are shared across scenarios. Constraints are defined (as in traditional
constraint satisfaction) by relations of allowed tuples of values, and can be
implemented with specialized and efficient algorithms for consistency check-
ing. Furthermore, the scenario-based view of stochastic constraint programs
also allows later-stage random variables to take values which are conditioned
by the earlier-stage random variables. This is a direct consequence of employ-
ing the scenario representation, in which random variables are replaced with
their scenario dependent values.

Scenario-based SCP has been outlined in Section 4.4. Tarim et al. [71]
not only defined a general way to compile stochastic constraint programs
into conventional constraint programs, but they also proposed a language,
Stochastic OPL, which is based on the OPL constraint modeling language
[28]. Using this language the authors modeled optimization problems under
uncertainty from a variety of fields, such as portfolio selection, agricultural
planning, and production/inventory management (Section 3.6). We will not
discuss the language in detail, but in the Appendix we show how to model
the single and multi-stage SKP problems of Section 2 by using the Stochastic
OPL.

Among the benefits of the scenario based approach in [71] is the fact
that it allows multiple chance-constraints and a range of different objectives
to be modeled. The authors point out that each of these changes would
require substantial modifications in the backtracking and forward checking
algorithms proposed in [78]. The scenario based view allows each of these
extensions to be modeled easily using stochastic OPL, compiled down into
standard OPL, and solved by means of existing solvers. It should be noted
that the approach is general and the compilation need not necessarily be
performed using OPL, but it can be implemented using any available CP
language and/or software package. The main drawback of this approach is
the fact that the scenario tree required to model a given problem grows
exponentially in size when random variable domains are large, thus leading
to large models that are difficult to solve.

In addition to this general purpose modeling/solving framework the au-
thors also proposed some techniques to improve the efficiency of the solution
process. In order to do so, they proposed scenario reduction techniques, such
as Monte Carlo Sampling or Latin Hypercube Sampling [65], to reduce the
number of scenarios considered in the model. Their experimental results show
the effectiveness of this approach, which in practice is able to find high qual-



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 29

ity solutions using a small number of scenarios. Finally, inspired by robust
optimization techniques used in OR [35], the authors also proposed some
techniques to generate robust solutions, that is solutions that adopt similar
(or the same) decisions under different scenarios.

7.1.2 Event-Driven Probabilistic Constraint Programming.

We now briefly discuss a second general purpose framework based on re-
formulation: Event-Driven Probabilistic Constraint Programming [67]. This
framework was introduced to address different problems than those for which
SCP is a suitable modeling tool. Event-Driven Probabilistic Constraint Pro-
gramming, as the name suggest, is connected to Probabilistic CSPs and,
mainly, to Dependent-chance Programming [37, 38].

Sometimes a complex probabilistic decision system undertakes multiple
tasks, called events here, and the decision-maker wishes to maximize chance
functions which are defined as the probabilities of satisfying these events. This
is especially useful in situations where a particular measure of the “reliabil-
ity” or “robustness” of a given plan has to be maximized. The Event-Driven
Probabilistic Constraint Programming modeling framework allows users to
designate certain probabilistic constraints, involving both decision and ran-
dom variables, as events whose chance of satisfaction must be maximized,
subject to hard constraints which should be always satisfied, and also log-
ical dependencies among constraints. Event-Driven Probabilistic Constraint
Programming builds on Dependent-chance Programming and provides more
expressiveness to the user, in order to capture a more realistic and accurate
measure of plan reliability [59]. It also provides an exact solution method, em-
ploying scenario-based reformulation, in contrast to the approximate genetic
algorithm in [38].

7.2 Problem Specific Strategies

We now discuss some problem specific strategies based on deterministic equiv-
alent reformulations.

7.2.1 Stochastic Queueing Control Problem.

In [75, 74] the authors propose a set of deterministic equivalent CP models for
solving the stochastic queueing control problem discussed in Section 3.1. [75]
not only provides the first application of CP to solving a stochastic queueing
control problem, but it also provides a complete approach for a problem for
which only a heuristic algorithm [8] existed. Three deterministic equivalent



30 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

constraint programming models and a shaving procedure are proposed. The
complete models provide satisfactory performances when compared with the
heuristic procedure, which nevertheless remains superior in terms of solution
quality over time. A hybrid method is therefore proposed, which combines
the heuristic in [8] with the best constraint programming method. Such a
hybrid approach performs better than either of these approaches separately.

The interesting aspect of this work is that, as in [60], all the stochastic
information is encoded as constraints and expected values, and there is no
need of random variables or scenarios. The three models proposed explore
different sets of variables and different configurations for the constraint set,
for instance using duality. Nevertheless, all the three models use predefined
constraints available in standard CP solvers.

7.2.2 A Stochastic Allocation and Scheduling Problem.

The problem, discussed in [39], is the scheduling problem described in Sec-
tion 3.2 applied to multiprocessor systems on chip: given a conditional task
graph characterizing a target application and a target architecture, with al-
ternative memory and computation resources, the authors compute an alloca-
tion and schedule that minimize the expected value of communication costs,
since — as they point out — communication resources are one of the major
bottlenecks in modern multiprocessor systems on chips. The approach they
propose is complete and efficient. As in the previous cases, it is based on a
deterministic equivalent reformulation of the original stochastic integer linear
programming model. More specifically, the authors employ logic based Ben-
ders decomposition. The stochastic allocation problem is solved through an
Integer Programming solver, while the scheduling problem with conditional
activities is handled with CP. The two solvers interact through no-goods.
Once more, one of the main contributions is the derivation of an analytical
deterministic expression employed in order to compute the expected value
of communication costs in the objective function. This expression makes it
possible for the authors to transform the original stochastic allocation prob-
lem into a deterministic equivalent one that can be solved using any available
Integer Programming solver.

7.2.3 Scheduling Internal Audit Units.

In [60] the authors analyze the problem of scheduling internal audit units
discussed in Section 3.8. A stochastic programming formulation is proposed
with Mixed Integer Linear Programming and CP certainty-equivalent models.
Both the models transform analytically the chance-constraints in the model
into deterministic equivalent ones. In experiments neither approach domi-
nates the other. However, the CP approach is orders of magnitude faster for



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 31

large audit times, and almost as fast as the MILP approach for small audit
times.

Finally, we discuss works in which the deterministic model obtained
through reformulation for a given stochastic program is not “equivalent”;
rather, it is based on some simplifying assumption that makes it possible to
obtain a compact deterministic formulation able to provide a near-optimal
solution and an approximate value for the cost of such a solution, or a bound
for such a cost.

7.2.4 Job Shop Scheduling with Probabilistic Durations.

In [3] an approximate deterministic reformulation is employed to compute
valid bounds to perform cost-based filtering. In this work the authors ana-
lyze the Job Shop Scheduling problem discussed in Section 3.4, in which the
objective is to find the minimum makespan. In contrast to the classic formu-
lation presented in [23], in [3] the authors assume that the job durations are
probabilistic. The objective is therefore accordingly modified to account for
uncertainty. More specifically, the authors search for a proactive plan, con-
sisting of a partial order among activities and of resource-activity allocations,
which attains the lowest possible makespan with probability greater or equal
to a given threshold. For this problem the authors propose a deterministic
formulation, which depends on a given non-negative parameter q. A correct
choice of such a parameter guarantees that the minimum makespan for the
deterministic model is a lower bound for the minimum makespan that can
be attained with a certain threshold probability in the original model. This
deterministic model can be efficiently solved with classic constraint program-
ming techniques and can provide tight bounds at each node of the search tree
that are employed to perform cost-based filtering. A number of heuristic tech-
niques are proposed for correctly choosing a “good” value for the parameter
q.

7.2.5 Production/Inventory Control Problem.

Consider the production/inventory problem discussed in Section 3.6. The de-
terministic reformulation proposed in Tarim et al. [73] relies on some mild
assumptions — discussed in [69] — concerning order-quantities. Under these
assumptions, it was possible for the authors to obtain analytical determinis-
tic expressions for enforcing the required service level in each period of the
planning horizon, and to compute the expected total cost associated with a
given set of policy parameters. By using these expressions, it was possible
for the authors to formulate a deterministic model by employing standard



32 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

constraints available in any CP solver. In [58], the authors compare the so-
lutions obtained through a complete formulation with those obtained with
the model in [73]. This comparison shows that the assumptions do not sig-
nificantly compromise optimality, whereas they allow the construction of a
model that can significantly outperform the complete one, and solve real-
world instances comprising long planning horizons and high demand values.

7.2.6 Local Search for Stochastic Template Design.

In [52] the stochastic template design problem discussed in Section 3.7 is
reformulated as a deterministic equivalent constrained optimisation problem,
using all possible scenarios and a novel modeling technique to eliminate non-
linear constraints. The result is a standard integer linear program that proved
to be hard to solve by branch-and-bound. However, a local search algorithm
design for linear integer programs performed very well, and was more scalable
than the Bender’s decomposition algorithm in [72].

8 Approaches Based on Sampling

In this section we will discuss sample-based approximation strategies for solv-
ing problems of decision making under uncertainty. Due to the complexity of
these problems in general, several works in the literature have been devoted
to analyzing the effectiveness of heuristic approaches based on sampling. In
Fig. 9 it is possible to observe how three main trends have been identified
in the CP and AI literature, which apply sampling in a hybrid setting for
solving problems of decision making under uncertainty: the Sample Average
Approximation approach (SAA), Forward Sampling and Sample Aggregation.

• In OR, and particularly in SP, the state-of-the-art technique that applies
sampling in combinatorial optimization is the Sample Average Approxi-
mation approach [34]. In this approach a given number of samples is drawn
from the random variable distributions, and the combinatorial problem of
interest is repeatedly solved by considering different samples as input in
each run. The real expected cost/profit of a solution produced for a given
sample is then computed by simulating a sufficient number of samples.
Among all the solutions computed, the one that provides the minimum
expected cost (or the maximum expected profit) is retained. Two criteria
are given by the authors: one for deciding when a given sample size is no
more likely to produce better solutions, and one to decide if it increasing
the sample size may lead to better solutions.

• Forward sampling, as the name suggests, is a sort of forward checking that
employs samples in order to make inference about which values are not



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 33

Hybrid Approaches
in Decision Making
under Unceratinty

Reformulation-based Sample-basedSearch & filtering
based on
stochastic reasoning

Forward sampling
- Multi-choice stochastic

knapsack with deadlines
- Job shop scheduling with
probabilistic durations

Sample aggregation:
Consensus
- Multi-choice stochastic
knapsack with deadlines

Regret
- Multi-choice stochastic
knapsack with deadlines

SAA
- Two-stage stochastic matching

Fig. 9 A classification of hybrid approaches in CP-AI-OR for decision making under
uncertainty: approaches based on sampling

text under figure

consistent in decision variable domains or about the expected cost/profit of
associated with a given (partial) assignment for decision variables, which
is assessed against the generated samples by computing, for instance, the
expected profit/cost of such an assignment with respect to these samples.

• Sample aggregation is a strategy in which a number of samples is gen-
erated, for each of these samples a deterministic problem is solved, then
the results obtained for all these samples are aggregated and analyzed ac-
cording to some rule. The “best” among these decisions is implemented in
practice. For instance, a possible rule may always choose the decision that
is optimal for the highest number of samples.

In the CP and AI literature, sampling is often applied in concert with a so
called “online” optimization strategy. Online refers to the fact that decisions
and observations are interleaved in the problem, and each time an observation
occurs an optimization step takes place to compute the next decision, by tak-
ing into account the probability density function of future random variables
and the observed values for the past ones. It is easy to notice that a multi-
stage stochastic program subsumes an online strategy if the decision maker
has a complete knowledge of the probability density function of the random
variables in the problem. In this case we may compute the entire solution tree
at the beginning, and use it in order to find the best following decision each
time a random variable is observed. Nevertheless, several reasons justify the



34 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

use of an online strategy (also called a “rolling horizon” approach in the OR
literature and especially in Inventory Control). The most compelling reason
for using an online approach is that it does not require the decision maker
to have a complete knowledge of the probability density functions of the
random variables. Consider, for instance, the Stochastic Knapsack Problem
introduced in the previous sections. If the problem is formulated as a multi-
stage stochastic program and we have a full knowledge about the possible
weights that can be observed for all the objects, the policy tree will prescribe
exactly what to do in each possible future course of action. Nevertheless, if at
some stage one of the objects takes a weight that is not part of the probabil-
ity density function we considered for such an object, the policy tree will not
be able to prescribe an appropriate action. In contrast, an online approach
would simply take into consideration this weight in the following optimiza-
tion step and it would however provide a valid decision to be implemented
next.

Stochastic problems solved using online strategies, and to which either
forward sampling or sample aggregation strategies are applied, appear in a
number of works within the CP and AI literatures. In what follow we shall
classify some of these works on the basis of which sampling technique is
applied.

8.1 Sample Average Approximation

In this section we provide a pointer to a work that proposes to apply SAA
to a modified version of a classic matching problem: the two-stage stochastic
matching problem.

8.1.1 Two-stage Stochastic Matching Problem.

In [33] Katriel et al. consider the two-stage stochastic matching problem dis-
cussed in Section 3.5. The authors prove lower bounds and analyze efficient
strategies. We do not provide here a general survey for this work, as the reader
may refer to the cited article for more details. Instead, we focus on one of
the authors’ contributions in which they firstly observe that, in this problem,
with independently activated vertices the number of scenarios is extremely
large. However, in such a situation there is often a black box sampling pro-
cedure that provides, in polynomial time, an unbiased sample of scenarios;
then they observe that one can use the SAA method to simulate the explicit
scenarios case and, under some mild assumptions, obtain a tight approxima-
tion guarantee. The main observation is that the value of the solution defined
by taking a polynomial number of samples of scenarios tightly approximates
the value of the solution defined by taking all possible scenarios.



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 35

8.2 Forward Sampling

In this section we survey two relevant works in which forward sampling is
applied: the multi-choice stochastic knapsack with deadlines and the job shop
scheduling with probabilistic durations.

8.2.1 Multi-Choice Stochastic Knapsack with Deadlines.

In [5] the authors analyze different techniques for performing online stochastic
optimization. A benchmark problem is proposed in order to assess all these
different techniques. The benchmark stemmed from the authors’ industrial
experience and it consist of a Multi-Choice Stochastic Knapsack with Dead-
lines. This problem corresponds, in practice, to the stochastic reservation
problem discussed in Section 3.3 and it is used to test four different online
strategies exploiting combinations of the stochastic and combinatorial aspects
of the problem. These strategies are, respectively, forward sampling, average
values, most likely scenario analysis and yield management techniques.

Initially, the authors propose two naive order handling policies: a first-
come/first-serve policy and a best-fit policy. Furthermore, in order to assess
the quality of a given policy, the authors also discuss “far seeing” strategies,
which assume advanced knowledge of the realized demand and can therefore
solve the associated deterministic multi-choice knapsack problem.4

One of the strategies used in this work to estimate the quality of a given
policy — for instance first-come/first-serve or best-fit — employs forward
sampling in order to generate samples from the current date to the end of
the planning horizon. The evaluation of a sample can be done, for instance,
by simulating the behavior of a best-fit strategy for the specific sample. The
policy evaluation then will be a measure (for instance the average) over the
evaluations of many generated samples.

8.2.2 Job Shop Scheduling with Probabilistic Durations.

Forward sampling is also employed in [3]. We recall that in this work the
authors analyze the Job Shop Scheduling problem discussed in Section 3.4,
in which the authors assume that the job durations are probabilistic. A num-
ber of algorithms are proposed for solving this problem through sampling.
Firstly, a branch-and-bound procedure is introduced, which exploits at each
node of the search tree a Monte Carlo simulation approach to compute —
with respect to the partial assignment associated with such a node — a valid
lower bound for the minimum possible makespan that may be attained with

4 We recall that in SP this corresponds to using a wait-and-see policy and performing a
posterior analysis.



36 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

a probability greater or equal to the given threshold. Since sampling is em-
ployed for computing the bound, confidence interval analysis is employed to
estimate if the attainment probability associated with the given makespan
is a sufficiently reliable estimate. Secondly, the authors propose a number of
heuristic techniques that aim to limit the amount of time spent on Monte
Carlo simulation during the search, by using the deterministic makespan as
an oracle for selecting and simulating only the most promising plans in order
to save CPU time and to dedicate more time to the exploration of the search
space rather than on simulating non-promising plans. Finally, dedicated tabu
search strategies are proposed in order to propose a valid alternative to the
constructive search techniques above, which are mainly based on tree-search.

8.3 Sample Aggregation

In this section, we discuss works in which two alternative sample aggregation
strategies are employed: the “Consensus” strategy and the “Regret” strategy.
The problem to which these strategies are applied is, once more, the multi-
choice stochastic knapsack with deadlines.

8.3.1 Multi-Choice Stochastic Knapsack with Deadlines.

In [27] the authors consider the same Online Multi-Choice Knapsack with
Deadlines problem considered in [5]. In order to solve this problem the authors
employ the following online algorithm. The algorithm receives a sequence of
online requests and starts with an empty allocation. At each decision point
the algorithm considers the current allocation and the current request, and
chooses a bin in which to allocate the request, which is then included in
the current assignment. Eventually, the algorithm returns the final allocation
and the respective value. In order to decide in which bin to allocate a given
request, the algorithm employs a function “chooseAllocation” which is based
on two black boxes: a function “getSample” that returns a sample of the ar-
rival distribution; and a function “optSol” that, given the current assignment
and a request, returns an optimal allocation of the request by taking into ac-
count the past decisions. The authors then consider four possible options for
implementing “chooseAllocation”:

• The best-fit strategy discussed in [5].
• A strategy called “Expectation” — in practice performing a forward sam-

pling —- that generates future requests by sampling and that evaluates
each possible allocation for a given request (i.e. in which bin to fit such a
request) against the samples.

• A strategy called “Consensus”, which was introduced in [47], and whose
key idea is to solve each sample only once. More specifically, instead of



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 37

evaluating each possible bin at a given time point with respect to each
sample, “consensus” executes the optimization algorithm only once per
sample. The bin to which the request is eventually allocated by this opti-
mization step is then credited with the respective profit, while the other
bins receive no credit. The algorithm eventually returns the bin with which
the highest profit is associated.

• A strategy called “Regret” [6, 7] based on a sub-optimality approximation,
which is a fast estimation of the loss caused by sub-optimal allocations.
The key steps in the process of choosing a bin resemble the “consensus”
algorithm. But in “regret”, instead of assigning some credit only to the
bin selected by the optimal solution, the sub-optimality approximation is
used to compute, for each possible request allocation, an approximation of
the best solution that makes such a choice. Therefore every available bin
is given an evaluation for every sample at a given time, at the cost of a
single optimization.

Consensus and regret are two examples of what we previously defined as
“sample aggregation” strategies.

9 Related Works

In this section we will first briefly discuss Stochastic Dynamic Programming, a
related and well established technique in OR that deals with decision making
under uncertainty. We will also clarify why this technique has not been cov-
ered in the former sections. Secondly, we will cast our work within a broader
picture, and contrast our survey with existing similar works that address the
topics of uncertainty and change.

9.1 Stochastic Dynamic Programming

An alternative and effective technique for modeling problems of decision mak-
ing under uncertainty is Dynamic Programming. In [4] Bellman explicitly
states that Dynamic Programming was initially conceived for modeling multi-
stage decision processes. He also argues that these processes arise in practice
in a multitude of diverse field and in many real life problems, for instance
in stock control, scheduling of patients through a medical clinic, servicing of
aircraft at an airfield, etc. Dynamic Programming has been applied to a mul-
titude of deterministic multi-stage decision problems, but in [4] Bellman also
discussed its application to stochastic multi-stage decision processes. As in
the deterministic case, in the stochastic case the modeling also relies mainly
on the development of adequate functional equations capturing the dynamics
of the system, and the expected cost (or profit) function associated with the



38 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

possible decisions and affected by the random variables in the problem. The
multi-stage decision process, in Dynamic Programming, is typically defined
recursively, starting from a bounding condition that describes a degenerate
state of the system that can be easily characterized. Depending on the specific
nature of the process being analyzed (Markovian, Semi-Markovian, etc. —
see [25], Chapter 8) it is possible to exploit its structure to devise efficient so-
lution methods or closed form solutions for the optimal control policy, which
corresponds to the policy tree that constitutes a solution of a given Stochastic
Program.

In this work we mainly focused on the connections between and integration
of SP, CP and AI. So far Dynamic Programming has not played a role as sig-
nificant as SP in the development of hybrids approaches for decision making
under uncertainty. For this reason, Stochastic Dynamic Programming and
its extension to infinite horizon case Markov Decision Processes are not thor-
oughly covered here. For more details on Stochastic Dynamic Programming
the reader may refer to the seminal work of Bellman [4], and to the works of
Bertsekas [9], Warren [49], Sutton and Barto [66] and Gosavi [25].

9.2 Related Modeling Frameworks

Recently, the topic of decision making under uncertain and dynamic environ-
ment has been discussed in two literature surveys [76, 14]. Nevertheless, these
two works discuss a variety of different problems that can hardly be classi-
fied within a unique group. For instance, consider a problem whose structure
changes dynamically over time. As an example we may refer to the Dynamic
Constraint Network discussed in [18], in which, from time to time, new facts
that become known about the model induce a change in the constraint net-
work. We find that such a problem has almost nothing in common with a
problem where some parameters are random — thus may assume a certain
value with a given probability — and a decision has to be taken proactively,
before the realized values for these parameters are known. As an example
for this second class, we may consider the proactive Job Shop Scheduling
problem discussed in [3], in which an optimal plan — that achieves a min-
imum makespan with a certain probability — has to be determined before
the actual job durations are known. Also consider, as in [22], a constraint
satisfaction problem in which we allow some of the constraints to be violated
by a solution, and in which we search for a solution that tries to satisfy the
original constraint problem as much as possible; or, alternatively, consider
a constraint satisfaction problem, as in [26], in which some of the values in
the decision variable domains may suddenly become unavailable after a so-
lution has been computed and for which we are looking for robust solutions
that can be “repaired” with little effort. These two latter examples, again,
significantly differ from the previous ones and among each others.



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 39

A clear and comprehensive classification of all these different problems
and frameworks is still missing. For this reason, in this section we propose a
classification in three distinct classes and we try to position in each of these
classes some of the frameworks proposed in the literature.

In our classification (Fig. 10) there are three criteria based on which a
particular framework is classified: Degree of Change, Degree of Satisfiability
and Degree of Uncertainty.

deterministic stochastic

dynamic

static

Degree of
Uncertainty

Degree of
Change

Degree of
Satisfiability

crisp

soft

Fig. 10 A classification for existing frameworks based on problem structure

• With respect to the Degree of Change, “static” refers to a classic, static
CSP, while “dynamic” refers to the fact that the model is assumed to
change dynamically, since constraints are added/removed. The solution
has to be flexible enough to be adapted to these changes without too many
modifications and with limited computational effort. Existing frameworks
that, with respect to the Degree of Change, are classified as “dynamic” are:
Dynamic Constraint Satisfaction (Dechter [18]); Conditional CSP (Minton
et al. [48]); and Super-solutions in CP (Hebrard et al. [26]).

• With respect to the Degree of Satisfiability “crisp” refers to a classic
CSP in which all the constraints have to be satisfied by a given solution,
while “soft” refers to the fact that some of the constraints in the model
may be violated by a solution. The aim is to find a solution that typically
violates the minimum number of constraints or that, in general, minimizes
some violation measure. Existing frameworks that, with respect to the
Degree of Satisfiability, are classified as “soft” are: Partial Constraint Sat-
isfaction (Freuder [20]); Constraint solving over semi-rings (Bistarelli et
al. [12]); and Valued Constraint Satisfaction (Schiex et al. [63]).



40 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

• With respect to the Degree of Uncertainty, “deterministic” refers to
classic CSPs, while “stochastic” refers to the existence of uncontrollable
(random) variables in the model for which a probability distribution is
given. Stochastic problems present an alternation of decisions and obser-
vations. Constraints are assigned a satisfaction threshold that must be met
by any given solution.

Some of the frameworks presented in the literature do, in fact, cover more
than one of the classes presented, and for this reason the circles are inter-
secting each others. Clearly, this classification does not cover several other
frameworks that in the years have been proposed to deal with other problem
classes.

We have introduced pointers to relevant frameworks that can be either
classified under Degree of Change (“dynamic”) or Degree of Satisfiability
(“soft”). Problems that are classified as “stochastic” with respect to their
Degree of Uncertainty have been widely surveyed in the former part of this
work. We argue that such a classification better positions existing works with
respect to aspects that are, in fact, orthogonal among each others.

10 Conclusions

In this survey we focused on hybrid CP-AI-OR methods for decision making
under uncertainty. Firstly, we explicitly defined what “uncertainty” is and
how it is possible to model it by using SP, a well established existing mod-
eling framework in OR. We surveyed additional existing frameworks — one
from AI and one from CP — for modeling problems of decision making un-
der uncertainty and we also identified the relevant connections among these
frameworks. Secondly, we introduced a list of problems from the literature in
which uncertainty plays a role and we categorized existing hybrid techniques
that have been proposed for tackling these problems into three classes. In the
first class we identified general and special purpose approaches that perform
“stochastic reasoning”. In the second class we listed approaches, once more
general and special purpose, that use reformulation. In the third class we cat-
egorized approximate techniques based on a variety of strategies employing
sampling. Finally, we pointed out connections with other related works.

Acknowledgements S. Armagan Tarim and Brahim Hnich are supported by the Scien-
tific and Technological Research Council of Turkey (TUBITAK) under Grant No. SOBAG-
108K027. S. Armagan Tarim is supported also by Hacettepe University BAB.



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 41

int k = ...;

int p = ...;

int c = ...;

float θ = ...;

range Items 1..k;

range onestage 1..1;

stoch myrand[onestage]=...;

float W[Items,onestage]^myrand = ...;

float r[Items] = ...;

dvar float+ z;

dvar int x[Items] in 0..1;

maximize sum(i in Items) x[i]*r[i] - expected(p*z)

subject to{
z >= sum(i in Items) W[i]*x[i] - c;

prob(sum(i in Items) W[i]*x[i] <= c) >= θ;

};

Fig. 11 Stochastic OPL formulation for the single-stage SKP

Appendix

In [71] Stochastic OPL, a language for modeling stochastic constraint pro-
grams, is proposed. We will now show how the single and multi-stage SKP
problems introduced in Section 2 can be easily modeled using such a language.

In Fig. 11 the Stochastic OPL model for the single stage SKP is pre-
sented. As in the model presented in Fig. 1, the objective function maximizes
the revenue brought by the objects in the knapsack minus the expected
penalty for exceeding capacity. Chance-constraint prob(sum(i in Items)

W[i]*x[i] <= c) >= θ ensures that the capacity is not exceeded with a
probability higher than θ.

We now refer to the numerical Example 1 for SKP. In Fig. 12 the Stochas-
tic OPL data file corresponding the numerical instance in Example 1 is pre-
sented. We recall that the strategy proposed in [71] employs a scenario-based
formulation. In fact it is easy to see that, given the random variables in the
example and the values in their domains, there are a total of 32 scenarios
that should be considered. Each row for variable W in Fig. 12 has, in fact, 32
entries (i.e. [<10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8>]). There are in total 5 rows, each hav-
ing 32 entries, so a column — containing all the entries at the same position
in each row — therefore fully encodes one of the possible 32 scenarios. The
probability of each of the 32 scenarios is provided using the array myrand. By
using the compilation strategy proposed in [71], any model and data file writ-
ten using Stochastic OPL can be easily compiled into a classic (deterministic)
constraint program and solved by using classic solvers. The optimal solution
for Example 1 — computed using the compiled OPL code obtained from the



42 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

k = 5;

p = 2;

c = 30;

θ = 0.6;

W = [

[<10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,8,8,8,

8,8,8,8,8,8,8,8,8,8,8,8,8>],

[<9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,9,9,9,9,9,9,

9,9,12,12,12,12,12,12,12,12>],

[<8,8,8,8,13,13,13,13,8,8,8,8,13,13,

13,13,8,8,8,8,13,13,13,13,8,8,8,8,13,13,13,13>],

[<4,4,6,6,4,4,6,6,4,4,6,6,4,4,6,6,4,4,

6,6,4,4,6,6,4,4,6,6,4,4,6,6>],

[<12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,

12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15>]

];

myrand = [

<0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),

0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),

0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),

0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),

0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),

0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),

0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),

0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125)>

];

r = [16,16,16,5,25];

Fig. 12 Stochastic OPL Data File for the single-stage SKP

Stochastic OPL model and data file presented — selects items {1, 4, 5} and
achieves an expected profit of 45.75, as shown in Fig 2.

The SKP can be also formulated as a multi-stage stochastic constraint
program as shown in Fig 3. In Fig. 13 the Stochastic OPL model for the multi-
stage SKP is presented. The model is similar to the one presented in Fig. 11.
Nevertheless, now the weight of each object is observed at a different decision
stage. Therefore we have an array of k random variables (stoch W[Items]) in
contrast to the previous model that only had one random variable (myrand)
to model the probability distribution of the possible scenarios. In Fig. 14 the
data file corresponding to the numerical instance in Example 1 is presented.
The optimal solution for Example 1, when the problem is formulated as
a multi-stage Stochastic COP, can be computed using the compiled OPL
code obtained from the Stochastic OPL model in Fig. 13 and from the data
file presented in Fig. 14. This solution takes the form of a policy tree —
graphically rendered in Fig. 4 — and achieves an expected profit of 47.75.



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 43

int k = ...;

int p = ...;

int c = ...;

float θ = ...;

range Items 1..k;

stoch W[Items]=...;

float r[Items] = ...;

dvar float+ z;

dvar int x[Items] in 0..1;

maximize expected(sum(i in Items) x[i]*r[i]) - p*expected(z)

subject to{
z >= sum(i in Items) W[i]*x[i] - c;

prob(sum(i in Items) W[i]*x[i] <= c) >= θ;

};

Fig. 13 Stochastic OPL formulation for the multi-stage SKP

k = 5;

p = 2;

c = 30;

θ = 0.6;

W = [

<10(0.5),8(0.5)>,

<9(0.5),12(0.5)>,

<8(0.5),13(0.5)>,

<4(0.5),6(0.5)>,

<12(0.5),15(0.5)>

];

r = [16,16,16,5,25];

Fig. 14 Stochastic OPL Data File for the multi-stage SKP

References

1. K. Apt. Principles of Constraint Programming. Cambridge University Press, Cam-
bridge, UK, 2003.

2. T. Balafoutis and K. Stergiou. Algorithms for stochastic csps. In Frédéric Benhamou,
editor, Principles and Practice of Constraint Programming, CP 2006, Proceedings,
volume 4204 of Lecture Notes in Computer Science, pages 44–58. Springer, 2006.

3. J. C. Beck and N. Wilson. Proactive algorithms for job shop scheduling with proba-
bilistic durations. J. Artif. Intell. Res. (JAIR), 28:183–232, 2007.

4. R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ,
1957.

5. T. Benoist, E. Bourreau, Y. Caseau, and B. Rottembourg. Towards stochastic con-
straint programming: A study of online multi-choice knapsack with deadlines. In Toby
Walsh, editor, Principles and Practice of Constraint Programming, CP 2001, Pro-
ceedings, volume 2239 of Lecture Notes in Computer Science, pages 61–76. Springer,
2001.



44 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

6. R. Bent and P. Van Hentenryck. Regrets only! online stochastic optimization under
time constraints. In Proceedings of the Nineteenth National Conference on Artifi-
cial Intelligence, Sixteenth Conference on Innovative Applications of Artificial Intel-
ligence, July 25-29, 2004, San Jose, California, USA, pages 501–506, 2004.

7. R. Bent, I. Katriel, and P. Van Hentenryck. Sub-optimality approximations. In Peter

van Beek, editor, Principles and Practice of Constraint Programming - CP 2005, 11th
International Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings,
volume 3709 of Lecture Notes in Computer Science, pages 122–136. Springer, 2005.

8. O. Berman, J. Wang, and K. P. Sapna. Optimal management of cross-trained workers
in services with negligible switching costs. European Journal of Operational Research,
167(2):349–369, 2005.

9. D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 1995.
10. L. Bianchi, M .Dorigo, L. Gambardella, and W. Gutjahr. A survey on metaheuristics

for stochastic combinatorial optimization. Natural Computing, 8(2):239–287, 2009.
11. J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer

Verlag, New York, 1997.
12. S. Bistarelli, U. Montanari, and F. Rossi. Constraint solving over semirings. In Pro-

ceedings of the Fourteenth International Joint Conference on Artificial Intelligence,
IJCAI ’95, pages 624–630, 1995.

13. L. Bordeaux and H. Samulowitz. On the stochastic constraint satisfaction framework.
In SAC ’07: Proceedings of the 2007 ACM symposium on Applied computing, pages
316–320, New York, NY, USA, 2007. ACM.

14. K. N. Brown and I. Miguel. Uncertainty and change. In F. Rossi, P. van Beek, and
T. Walsh, editors, Handbook of Constraint Programming, chapter 21. Elsevier, 2006.

15. A. Charnes and W. W. Cooper. Deterministic equivalents for optimizing and satisficing
under chance constraints. Operations Research, 11(1):18–39, 1963.

16. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.
Commun. ACM, 5(7):394–397, 1962.

17. M. Davis and H. Putnam. A computing procedure for quantification theory. J. ACM,
7(3):201–215, 1960.

18. R. Dechter and A. Dechter. Belief maintenance in dynamic constraint networks. In
Proceedings of the 7th National Conference on Artificial Intelligence, AAAI ’88, pages
37–42, 1988.

19. H. Fargier, J. Lang, R. Martin-Clouaire, and T. Schiex. A constraint satisfaction frame-
work for decision under uncertainty. In UAI ’95: Proceedings of the Eleventh Annual
Conference on Uncertainty in Artificial Intelligence, August 18-20, 1995, Montreal,
Quebec, Canada, pages 167–174, 1995.

20. E. C. Freuder. Partial constraint satisfaction. In Proceedings of the Eleventh Interna-
tional Joint Conference on Artificial Intelligence, IJCAI ’89, pages 278–283. Morgan
Kaufmann, 1989.

21. E. C. Freuder and P. D. Hubbe. Extracting constraint satisfaction subproblems. In
Proceedings of the Fourteenth International Joint Conference on Artificial Intelli-
gence, IJCAI ’95, Montral, Qubec, Canada, August 20-25, pages 548–557. Morgan
Kaufmann, 1995.

22. E. C. Freuder and R. J. Wallace. Partial constraint satisfaction. Artif. Intell., 58(1-
3):21–70, 1992.

23. M. R. Garey and D. S. Johnson. Computer and Intractability. A guide to the theory
of NP-Completeness. Bell Laboratories, Murray Hill, New Jersey, 1979.

24. F. J. Gomez, J. Schmidhuber, and R. Miikkulainen. Efficient non-linear con-
trol through neuroevolution. In Johannes Fürnkranz, Tobias Scheffer, and Myra
Spiliopoulou, editors, Machine Learning: ECML 2006, 17th European Conference on
Machine Learning, Berlin, Germany, September 18-22, 2006, Proceedings, volume
4212 of Lecture Notes in Computer Science, pages 654–662. Springer, 2006.

25. A. Gosavi. Simulation-Based Optimization: Parametric Optimization Techniques and
Reinforcement Learning. Kluwer Academic Publishers, Norwell, MA, USA, 2003.



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 45

26. E. Hebrard, B. Hnich, and T. Walsh. Super solutions in constraint programming. In
Jean-Charles Régin and Michel Rueher, editors, Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems, First Inter-
national Conference, CPAIOR 2004, Nice, France, April 20-22, 2004, Proceedings,
volume 3011 of Lecture Notes in Computer Science, pages 157–172. Springer, 2004.

27. P. Van Hentenryck, R. Bent, and Y. Vergados. Online stochastic reservation systems.
In J. Christopher Beck and Barbara M. Smith, editors, Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems,
Third International Conference, CPAIOR 2006, Cork, Ireland, May 31 - June 2,
2006, Proceedings, volume 3990 of Lecture Notes in Computer Science, pages 212–
227. Springer, 2006.

28. P. Van Hentenryck, L. Michel, L. Perron, and J.-C. Régin. Constraint programming
in opl. In Gopalan Nadathur, editor, Proceedings of the International Conference
on Principles and Practice of Declarative Programming (PPDP’99), volume 1702 of
Lecture Notes in Computer Science, pages 98–116, September 29 - October 1 1999.

29. N. M. Hewahi. Engineering industry controllers using neuroevolution. AI EDAM,
19(1):49–57, 2005.

30. B. Hnich, R. Rossi, S. A. Tarim, and S. D. Prestwich. Synthesizing filtering algorithms
for global chance-constraints. In Principles and Practice of Constraint Programming,
CP 2009, Proceedings, volume 5732 of Lecture Notes in Computer Science, pages
439–453. Springer, 2009.

31. H. Jeffreys. Theory of Probability. Clarendon Press, Oxford, UK, 1961.
32. P. Kall and S. W. Wallace. Stochastic Programming. John Wiley & Sons, 1994.
33. I. Katriel, C. Kenyon-Mathieu, and E. Upfal. Commitment under uncertainty: Two-

stage stochastic matching problems. In Lars Arge, Christian Cachin, Tomasz Jur-
dzinski, and Andrzej Tarlecki, editors, Automata, Languages and Programming, 34th
International Colloquium, ICALP 2007, Wroclaw, Poland, July 9-13, 2007, Proceed-
ings, volume 4596 of Lecture Notes in Computer Science, pages 171–182. Springer,
2007.

34. A. J. Kleywegt, A. Shapiro, and T. Homem-De-Mello. The sample average approxi-
mation method for stochastic discrete optimization. SIAM Journal of Optimization,
12(2):479–502, 2001.

35. M. L. Littman, J. Goldsmith, and M. Mundhenk. The computational complexity of
probabilistic planning. Journal of Artificial Intelligence Research, 9:1–36, 1998.

36. M. L. Littman, S. M. Majercik, and T. Pitassi. Stochastic boolean satisfiability. J.
Autom. Reasoning, 27(3):251–296, 2001.

37. B. Liu. Dependent-chance programming: A class of stochastic optimization. Computers
& Mathematics with Applications, 34:89–104, 1997.

38. B. Liu and K. Iwamura. Modelling stochastic decision systems using dependent-chance
programming. European Journal of Operational Research, 101:193–203, 1997.

39. M. Lombardi and M. Milano. Stochastic allocation and scheduling for conditional task
graphs in mpsocs. In Frédéric Benhamou, editor, Principles and Practice of Constraint
Programming - CP 2006, 12th International Conference, CP 2006, Nantes, France,
September 25-29, 2006, Proceedings, volume 4204 of Lecture Notes in Computer Sci-
ence, pages 299–313. Springer, 2006.

40. M. Lombardi and M. Milano. Scheduling conditional task graphs. In Christian
Bessiere, editor, Principles and Practice of Constraint Programming - CP 2007, 13th
International Conference, CP 2007, Providence, RI, USA, September 23-27, 2007,
Proceedings, volume 4741 of Lecture Notes in Computer Science, pages 468–482.
Springer, 2007.

41. S. M. Majercik. Planning under uncertainty via stochastic satisfiability. PhD thesis,
Durham, NC, USA, 2000. Supervisor-Littman, Michael L.

42. S. M. Majercik. Appssat: Approximate probabilistic planning using stochastic satisfi-
ability. Int. J. Approx. Reasoning, 45(2):402–419, 2007.



46 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

43. S. M. Majercik. Stochastic Boolean Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications, chapter 27, pages 887–925. IOS Press, February 2009.

44. S. M. Majercik and B. Boots. Dc-ssat: A divide-and-conquer approach to solving
stochastic satisfiability problems efficiently. In Manuela M. Veloso and Subbarao
Kambhampati, editors, Proceedings, The Twentieth National Conference on Artifi-
cial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence
Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA, pages 416–422. AAAI
Press / The MIT Press, 2005.

45. S. M. Majercik and M. L. Littman. Maxplan: A new approach to probabilistic plan-
ning. In Proceedings of the Fourth International Conference on Artificial Intelligence
Planning Systems, Pittsburgh Pennsylvania, USA, pages 86–93. AAAI Press, 1998.

46. S. M. Majercik and M. L. Littman. Contingent planning under uncertainty via stochas-
tic satisfiability. Artif. Intell., 147(1-2):119–162, 2003.

47. L. Michel and P. Van Hentenryck. Iterative relaxations for iterative flattening in
cumulative scheduling. In Shlomo Zilberstein, Jana Koehler, and Sven Koenig, editors,
Proceedings of the Fourteenth International Conference on Automated Planning and
Scheduling (ICAPS 2004), June 3-7 2004, Whistler, British Columbia, Canada, pages
200–208. AAAI, 2004.

48. S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Minimizing conflicts: A
heuristic repair method for constraint satisfaction and scheduling problems. Artif.
Intell., 58(1-3):161–205, 1992.

49. W. B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality (Wiley Series in Probability and Statistics). Wiley-Interscience, 2007.

50. S. D. Prestwich, A. Tarim, R. Rossi, and B. Hnich. A cultural algorithm for pomdps

from stochastic inventory control. In Maria J. Blesa, Christian Blum, Carlos Cotta,
Antonio J. Fernández, José E. Gallardo, Andrea Roli, and Michael Sampels, editors,
Hybrid Metaheuristics, 5th International Workshop, HM 2008, Málaga, Spain, Octo-
ber 8-9, 2008. Proceedings, volume 5296 of Lecture Notes in Computer Science, pages
16–28. Springer, 2008.

51. S. D. Prestwich, A. Tarim, R. Rossi, and B. Hnich. A steady-state genetic algorithm
with resampling for noisy inventory control. In Günter Rudolph, Thomas Jansen, Si-
mon M. Lucas, Carlo Poloni, and Nicola Beume, editors, Parallel Problem Solving from

Nature - PPSN X, 10th International Conference Dortmund, Germany, September
13-17, 2008, Proceedings, volume 5199 of Lecture Notes in Computer Science, pages
559–568. Springer, 2008.

52. S. D. Prestwich, S. A. Tarim, and B. Hnich. Template design under demand uncer-
tainty by integer linear local search. International Journal of Production Research,
44(22):4915–4928, 2006.

53. S. D. Prestwich, S. A. Tarim, R. Rossi, and B. Hnich. Evolving parameterised policies
for stochastic constraint programming. In Principles and Practice of Constraint Pro-
gramming, CP 2009, Proceedings, volume 5732 of Lecture Notes in Computer Science,
pages 684–691. Springer, 2009.

54. S. D. Prestwich, S. A. Tarim, R. Rossi, and B. Hnich. Neuroevolutionary inventory
control in multi-echelon systems. In 1st International Conference on Algorithmic
Decision Theory, volume 5783 of Lecture Notes in Computer Science, pages 402–413.
Springer, 2009.

55. L. Proll and B. Smith. Integer linear programming and constraint programming ap-
proaches to a template design problem. INFORMS J. on Computing, 10(3):265–275,
1998.

56. R. Rossi, S. A. Tarim, B. Hnich, and S. D. Prestwich. Replenishment planning for
stochastic inventory systems with shortage cost. In Pascal Van Hentenryck and Lau-
rence A. Wolsey, editors, Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, 4th International Conference,
CPAIOR 2007, Brussels, Belgium, May 23-26, 2007, Proceedings, volume 4510 of
Lecture Notes in Computer Science, pages 229–243. Springer Verlag, 2007.



A Survey on CP-AI-OR Hybrids for Decision Making under Uncertainty 47

57. R. Rossi, S. A. Tarim, B. Hnich, and S. D. Prestwich. Cost-based domain filtering for
stochastic constraint programming. In P. J. Stuckey, editor, Principles and Practice
of Constraint Programming, 14th International Conference, CP 2008, Sydney, Aus-
tralia, September 14-18, 2008. Proceedings, volume 5202 of Lecture Notes in Computer
Science, pages 235–250. Springer, 2008.

58. R. Rossi, S. A. Tarim, B. Hnich, and S. D. Prestwich. A global chance-constraint for
stochastic inventory systems under service level constraints. Constraints, 13(4):490–
517, 2008.

59. R. Rossi, S. A. Tarim, B. Hnich, S. D. Prestwich, and Cahit Guran. A note on
liu-iwamura’s dependent-chance programming. European Journal of Operational Re-
search, 198(3):983–986, 2009.

60. R. Rossi, S. A. Tarim, B. Hnich, S. D. Prestwich, and S. Karacaer. Scheduling in-
ternal audit activities: a stochastic combinatorial optimization problem. Journal of
Combinatorial Optimization, 2008.

61. G. A. Rummery and M. Niranjan. On-line q-learning using connectionist systems.
Technical report, CUED/F-INFENG/TR 166, Cambridge University, 1994.

62. N. V. Sahinidis. Optimization under uncertainty: State-of-the-art and opportunities.
Computers and Chemical Engineering, 28:971–983, 2004.

63. T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction problems: Hard
and easy problems. In Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence, IJCAI ’95, pages 631–639. Morgan Kaufmann, 1995.

64. K. O. Stanley and R. Miikkulainen. Evolving neural network through augmenting
topologies. Evolutionary Computation, 10(2):99–127, 2002.

65. M. L. Stein. Large sample properties of simulation using latin hypercube sampling.
Technometrics, 29:143–151, 1987.

66. R. S. Sutton and A/ G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, March 1998.

67. S. A. Tarim, B. Hnich, S. D. Prestwich, and R. Rossi. Finding reliable solution:
Event-driven probabilistic constraint programming. Annals of Operations Research,
171(1):77–99, 2008.

68. S. A. Tarim, B. Hnich, R. Rossi, and S. D. Prestwich. Cost-based filtering techniques
for stochastic inventory control under service level constraints. Constraints, 14(2):137–
176, 2009.

69. S. A. Tarim and B. G. Kingsman. The stochastic dynamic production/inventory lot-
sizing problem with service-level constraints. International Journal of Production
Economics, 88:105–119, 2004.

70. S. A. Tarim and B. G. Kingsman. Modelling and Computing (Rn,Sn) Policies for
Inventory Systems with Non-Stationary Stochastic Demand. European Journal of
Operational Research, 174:581–599, 2006.

71. S. A. Tarim, S. Manandhar, and T. Walsh. Stochastic constraint programming: A
scenario-based approach. Constraints, 11(1):53–80, 2006.

72. S. A. Tarim and I. Miguel. A hybrid benders’ decomposition method for solving
stochastic constraint programs with linear recourse. In Brahim Hnich, Mats Carlsson,
François Fages, and Francesca Rossi, editors, Recent Advances in Constraints, Joint
ERCIM/CoLogNET International Workshop on Constraint Solving and Constraint
Logic Programming, CSCLP 2005, Uppsala, Sweden, June 20-22, 2005, Revised Se-
lected and Invited Papers, volume 3978 of Lecture Notes in Computer Science, pages
133–148. Springer, 2005.

73. S. A. Tarim and B. Smith. Constraint Programming for Computing Non-Stationary
(R,S) Inventory Policies. European Journal of Operational Research, 189:1004–1021,
2008.

74. D. Terekhov and J. C. Beck. A constraint programming approach for solving a queueing
control problem. J. Artif. Intell. Res. (JAIR), 32:123–167, 2008.



48 Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

75. D. Terekhov and J. Christopher Beck. Solving a stochastic queueing control problem
with constraint programming. In Pascal Van Hentenryck and Laurence A. Wolsey, ed-
itors, Integration of AI and OR Techniques in Constraint Programming for Combina-
torial Optimization Problems, 4th International Conference, CPAIOR 2007, Brussels,
Belgium, May 23-26, 2007, Proceedings, volume 4510 of Lecture Notes in Computer
Science, pages 303–317. Springer, 2007.

76. G. Verfaillie and N. Jussien. Constraint solving in uncertain and dynamic environ-
ments: A survey. Constraints, 10(3):253–281, 2005.

77. T. Walsh. Sat v csp. In Rina Dechter, editor, Principles and Practice of Constraint
Programming, CP 2000, Proceedings, volume 1894 of Lecture Notes in Computer Sci-
ence, pages 441–456. Springer, 2000.

78. T. Walsh. Stochastic constraint programming. In Frank van Harmelen, editor, Eu-
ropean Conference on Artificial Intelligence, ECAI’2002, Proceedings, pages 111–115.
IOS Press, 2002.

79. Y. Zhuang and S. M. Majercik. Walkssat: An approach to solving large stochastic
satisfiability problems with limited time. Technical report.


