
International Workshop on
Lot-Sizing - IWLS’2023

23th-25th August 2023, Cork, Ireland



Table of contents

Workshop Organization ii

List of sponsors iii

Workshop Overall Schedule iv

Cutting Stock (Aula Maxima - Wednesday, 23/08 - 09:30-10:30) 1

A simultaneous lot-sizing, sequencing and cutting stock problems in the furniture
industry, Maissa Mati [et al.] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A 3-level integrated lot-sizing and cutting stock problem with supplier selection
and distribution decisions, Silvio Alexandre de Araujo [et al.] . . . . . . . . . . . 6

Sustainability (Aula Maxima - Wednesday, 23/08 - 11:00-12:30) 10

A Heuristic Algorithm to solve the One-Warehouse Multi-Retailer Problem with
an Emission Constraint, Matthieu Gruson [et al.] . . . . . . . . . . . . . . . . . . 10

Coordinating shipments in lot-sizing models, Wilco van den Heuvel [et al.] . . . . 15

Network Design for Closed-Loop Supply Chain Network with Hybrid Retail-
ers/Collection Centres, Mahdi Doostmohammadi [et al.] . . . . . . . . . . . . . . 19

Energy (Aula Maxima - Wednesday, 23/08 - 14:00-15:30) 20

Ensuring fair allocation of renewable energy in microgrids for supply planning, Na-
talia Jorquera-Bravo [et al.] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

First results on energy-oriented lot-sizing and scheduling with energy storage, Stephan
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A simultaneous lot-sizing, sequencing and cutting
stock problems in the furniture industry

Maissa Mati, Abderrahim Sahli and Sana Belmokhtar-Berraf
Grettia, Université Gustave Eiffel, 16 Bd Newton, Champs sur Marne 77420
maissa.mati, abderrahim.sahli, sana.berraf-belmokhtar@univ-eiffel.fr

Abstract

This study addresses the integration of lot-sizing, sequencing, and cutting
stock problems in the furniture industry where the production system is com-
posed of two stages with a buffer in between. The buffer is filled in the first
stage with pieces cut from wood panels to ensure a continuous painting process
in the second phase, which is the bottleneck. The planning issue is to determine
the total number of wood panels to be cut and the quantities of pieces to be
painted using a robotic arm, as well as their sequence, in order to meet demand
within a finite time horizon while minimizing inventory and setup costs. The
study proposes several mixed-integer programming models that are compared
based on randomly generated instances based on real data.

1 Introduction

The lot-sizing and cutting-stock problems have been extensively studied for over 50
years [1]. Significant progress has been made in modeling and solving each problem
individually, considering their NP-hard nature. However, recent interest has grown
in integrating these problems due to advancements in optimization theory, hardware,
software, and observed interdependencies across diverse industries [1]. This integra-
tion aims to consider both decisions simultaneously, capturing their interdependence
for a global optimization. The authors of [2] recently investigated the integration
of these two problems in a study focused on the manufacturing process of aerospace
composite products. A classification of literature on the integration of lot-sizing and
cutting-stock problems can be found in [1]. This classification revolves around two
main types of integration: integration across multiple periods of the planning horizon
through inventory management and integration between different production levels,
including bin provisioning, cutting, and production of finished products. Our prob-
lem considers a multi-period, multi-level integration approach, excluding the first
level which involves the supply of wood panels. Several papers, including [4, 3] and
others, are cited in [1], addressing similar integration types to our study.
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2 Problem model

We have proposed three MIP models for the considered problem. Here, we present
the most effective one, which determines the required quantities of bins and items
to be cut in each period, as well as the coloring batches and color sequence for each
period. Let T be the set of periods, B be the set of bins, J be the set of item types,
and C be the set of colors. For each period t, the demand for items of type j colored
in c is denoted as djct and is known in advance. The duration of each period t is
denoted as ft. Each item of type j can only be cut from a compatible bin b. The
binary parameter gjb indicates the compatibility of item j with bin b. To simplify
the problem, colors are grouped into three categories: light, medium, and dark, along
with a fictitious color denoted as 0, which represents the cleaned state of the robot.
This color serves as the initial and final color in each period. Let M be the set of
all possible color combinations (i.e., color subsets) that can be used in any period.
There are a total of 8 possibilities, including the combination that contains only
the cleaned state. The binary parameter acm indicates whether color combination
m includes c. Given the limited number of colors, determining the optimal color
sequence for each combination and calculating the associated optimal cost ϕm is
straightforward. The objective function incorporates additional costs related to bin
utilization, item painting, and item storage. The unit cost of using bin b is denoted
as µb, the unit storage cost for non-colored items of type j is denoted as ψ̂j, and ψjc
for colored items. The proposed MIP includes the following decision variables: Ybt,
binary variables equal to 1 if bin b is used in period t; Zjbt, linear variables represent
the quantity of items of type j cut from bin b in period t; Xmt, binary variables equal
to 1 if model m is used in period t; Qjct, linear variables indicating the quantity of

colored items of type j in color c during period t; Q̂jt, linear variables indicating the
quantity of non-colored items of type j during period t; Ijct, linear variables indicating

the inventory of colored items of type j in color c at the end of period t; and Îjt, linear
variables indicating the inventory of non-colored items of type j at the end of period
t. The integrated problem can be formulated as follows.

Min
∑

b∈B
µb Yb +

∑

t∈T

∑

m∈M
ϕm Xmt +

∑

j∈J

∑

t∈T

∑

c∈C
ψjcIjct +

∑

j∈J

∑

t∈T
ψ̂j Îjt (1)

subject to :

∑

m∈M
Xmt = 1 ∀t ∈ T (2)

∑

j∈J
Qjct ⩽ ft × acm ×Xmt ∀j ∈ J , ∀c ∈ C, ∀m ∈ M, ∀t ∈ T (3)

∑

t∈T

∑

m∈M
ϕm Xmt +

∑

j∈J

∑

c∈C
Qjct × pj ⩽ ft ∀t ∈ T (4)
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Ijc t−1 + Qjct = djct + Ijct ∀c ∈ C, ∀t ∈ T (5)

Îjt +
∑

c∈C
Qjct = Q̂jt + Îjt−1 ∀c ∈ C, ∀t ∈ T (6)

∑

b∈ B
Zjbt ⩾ Q̂jt ∀j ∈ J , ∀t ∈ T (7)

wj × Zjbt ≤ gjb × Capb ∀b ∈ B, ∀t ∈ T , ∀j ∈ J (8)
∑

j∈J
wjZjbt ≤ Capb ∀b ∈ B, ∀t ∈ T (9)

M Ybt ⩾ Zjbt ∀j ∈ J , ∀b ∈ B, ∀t ∈ T (10)

Yb, Xmt ∈ {0, 1} ∀b ∈ B, ∀t ∈ T (11)

Qjct, Îjt, Ijct, Zjbt ∈ N ∀j ∈ J , ∀c ∈ C, ∀t ∈ T (12)

The objective function (1) aims to minimize the total costs associated with bin
utilization, color change, and storage of both colored and non-colored items. Con-
straints (2) ensure the selection of only one color combination per period. Constraints
(3) allow painting items in color c during period t (i.e., Qjct > 0) only if the selected
color combination includes this color for that period (i.e., acm.Xmt = 1). The con-
straints (4)-(6) are related to lot sizing. Constraints (4) represent the period capacity
constraints. Flux conservation for colored and non-colored items is modeled by con-
straints (5) and (6), respectively. Constraints (7) ensure that the buffer between the
cutting phase and the painting phase is filled. Constraints (9) to (10) represent the
cutting stock constraints. Constraints (8) enforce cutting items of type j exclusively
from compatible bin b (i.e., gjb = 1). Constraints (9) represent the bin capacity con-
straints. Constraints (10) set the binary variable Ybt to one exclusively when bin b is
used in period t (i.e., Xjbt > 0). Constraints (11)-(12) define the range of variables.

Computational experiments were carried out to assess the performance of the MIP
using CPLEX 20.1.0 on an Intel Xeon 3.60 GHz processor with 128 GB RAM. The
model, implemented in C++, was tested on 300 randomly generated instances based
on a real-case study. These instances are categorized into 30 distinct classes, each
comprising 10 instances. The classes are defined by the number of periods (each
period corresponds to an 8-hour workday) and the number of item types: |T | =
5, 10, 15, 20, 25, 30 and |J | = 10, 20, 30, 40, 50. We observed that classes with equal
numbers of periods but varying item quantities exhibited similar behavior, suggesting
that the class complexity is primarily determined by the number of periods rather than
the number of items. To present results concisely, instances with the same periods
were grouped into a single row, as shown in Table 1. Each row in the table reports
the mean computation times in CPU seconds (CPU) and the average deviation from
the optimal objective values in percent (GAP ). Additionally, we include the average
number of constraints (NC) and the average number of variables (NV ).

3
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|J | |T | NV NC CPU GAP

[10, 50] 5 18770 17775 11.72 0.00
[10, 50] 10 35964 36501 250.95 0.00
[10, 50] 15 53403 55106 1297.88 0.10
[10, 50] 20 71154 70804 1815.29 0.40
[10, 50] 25 87964 92890 2950.27 1.37
[10, 50] 30 104233 112522 3600.00 2.00

Table 1: Numerical results

3 Conclusion

Based on the experimental study below, the solver is unable to successfully solve the
model within the given 1-hour time limit for instances with a size of 30 periods. To
overcome this limitation, we have developed an approximate solution approach that
effectively addresses the trade-off between the objective value and execution time.
Our proposed method involves initially solving the lot sizing and sequencing part
using branch and price method, which provides the necessary quantities of pieces to
be cut in each period. This information is then utilized to solve the cutting stock
problem, again employing the branch and price method.
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A 3-level integrated lot-sizing and cutting stock
problem with supplier selection and distribution

decisions

Silvio Alexandre de Araujo
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Abstract

In this paper, a generalized 3-level integrated lot-sizing and cutting stock
problem (G3ILSCS) proposed in the literature is extended to take into account
other relevant decisions of the supply chain. The extensions consist of the
selection of the suppliers of the raw materials used in the cutting process and the
distribution of the final products from the production plant to a warehouse. To
solve the integrated problem, a hybrid heuristic is proposed aiming to overcome
the difficulties present in the integrated problem, mainly comprising the high
number of variables, the multi-level structure, and the integrality requirements.
The hybrid method embeds two decomposition approaches in each iteration of
the algorithm: the column generation and the relax-and-fix procedure. Due
to the features of the problem, an innovative column generation procedure
is present to manage the cutting patterns in the cutting stock problem, as
well as the cargo configurations in the distribution problem. The models and
solution approaches are analyzed in an extensive computational study aiming
to evaluate the impact of incorporating other decisions of the supply chain
into the integrated problem, as well as to assess the performance of the hybrid
heuristic when seeking a solution to the integrated problem.
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1 Introduction

The idea of integrating processes in a production plant is to take into account, simul-
taneously, the decisions related to the problems involved so as to capture the inter-
dependency between the decisions in order to obtain a better global solution. The
manufacturing setting addressed in this study has its production processes linked to
the cutting of raw materials (objects) and the production planning of end products
(final products). In these industries, objects of large sizes are kept in stock to be cut
later into smaller pieces of different sizes, using cutting patterns, in order to meet
internal demand. These pieces then go to downstream levels of the production plant
in order to produce and assemble the final products. The production planning of
final products takes into account the tradeoff between setup and inventory holding
costs to meet the clients’ demand, considering capacity limitations. Therefore, it is
necessary to plan the acquisition, production, and cutting of these objects, as well
as the production of final products, in order to minimize the negative effects of these
processes, which can be seen as the waste of material, delays in downstream levels,
high costs, among others. These two problems are known in the literature as the
cutting stock problem and the lot-sizing problem, respectively ([6, 3, 4, 1]).

A generalized 3-level integrated problem, G3ILSCS, proposed in [5], is extended
and computationally analyzed considering other relevant decisions/levels of the sup-
ply chain. The first extension consists of an alternative means to the acquisition of
objects, besides producing these objects in the company, and comprehends the sup-
plier selection of objects used in the cutting process. In this alternative level, suppliers
can also provide the inputs (objects) to the production plant. The other extension
addresses an additional level after the production of final products, related to the
distribution of the final products from the production plant to a warehouse. The
problem with all these features comprise an 4-level integrated lot-sizing and cutting
stock problem with supplier selection and distribution (G4ILSCS ).

2 Mathematical Models and Solution Methods

The G3ILSCS model consists of a production environment composed of three levels
and multi-periods in a deterministic setting. Level 1 corresponds to the production
planning of objects, that have to be produced considering a capacitated environment
in order to fulfill the downstream level (level 2). Level 2 is associated with the
cutting process, in which the produced objects are cut into pieces according to cutting
patterns [2] by a cutting machine with limited resources. The cut pieces can be used
as components to assemble the final products or directly as final products. It is at level
3 that the production of the final products occurs and the independent demand for
final products has to be met in each time period. The link between the different time

2
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periods is provided by inventory at each level. There is a bill-of-material relationship,
for which the dependent demand of final products triggers a dependent demand for
pieces, and indirectly, for objects. Therefore, the decisions of the 3-level integrated
problem determines simultaneously a production planning that defines for every time
period: the production quantities for products and objects and the cutting patterns,
with corresponding frequencies, considering limited resources, while searching for a
global optimal minimal solution to the 3-level integrated problem.

In the G4ILSCS, an alternative means to the acquisition of objects needed in the
cutting process is considered, i.e., objects can be produced at level 1 of the produc-
tion plant, as well as be purchased from external suppliers at level 1A. The supplier
selection at level 1A takes into account a set of suppliers offering different types of
objects, which can be purchased considering fixed and variable costs, proportional to
the quantity purchased. The price of objects does not vary according to the number
of objects ordered, i.e., there is no discount rate. In this integrated approach, the
supplier selection decisions define the number of objects to be purchased considering
the different supplier costs, which allied to an optimized production planning of the
cutting process, and the production of the final products and objects, aims to reduce
the total costs in the integrated problem.

The other extension modeled in the G4ILSCS manages the distribution of final
products. Level 4 is responsible for the distribution costs incurred from shipments be-
tween the production plant and the warehouse. The distribution decisions are related
to the load/arrangements of final products into vehicles, i.e., they are associated with
the number of vehicles needed to transport the final products, hence, such decisions
are directly linked to the production lot-sizing decisions of final products. In this in-
tegrated problem, the demand of final products is shifted from the production plant
to the warehouse and in both sites, there is the possibility of inventory. Inventory at
the production plant arises from cargo consolidation on the vehicles, whereas at the
warehouse, inventory is addressed to keep the final products in stock in order to meet
the clients’ orders. Therefore, the distribution decisions define the number of vehicles
utilized in the transport of final products and the transportation costs incurred in
each time period of the planning horizon, i.e., this problem combines the lot-sizing
and cutting stock decisions with vehicle loading decisions.

Considering that the problems addressed in this study are classified as NP-hard, we
proposed a hybrid heuristic solution method to solve the integrated problem, aiming
to overcome the difficulties, comprising the multi-level structure, the hight number
of the variables, and integrality requirements. The goal of the hybrid heuristic is
to provide a good trade-off between solution quality and computational effort while
solving the integrated problem. The column generation procedure is used as a first
step to generate an initial matrix of columns (cutting patterns for cutting the objects
into pieces and cargo configurations for loading the final products into de vehicles)
at levels 2 and 4 of the integrated problem. After that, the column generation is

3
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applied in each step of the relax-and-fix procedure in the hybrid heuristic, aiming to
find more attractive columns, for cutting patterns and cago configurations, while the
hybrid heuristic searches for a feasible solution to the integrated problem.

The models and solution methods are analyzed in an extensive computational
study. Therefore, the main objective of this study is to evaluate the impact of in-
corporating levels of the supply chain into the integrated problem, as well as assess
the performance of the hybrid approach in different environments when solving the
3-level integrated lot-sizing and cutting stock problem with supplier selection and
distribution decisions.
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ESG - UQÀM and CIRRELT
gruson.matthieu@uqam.ca

Raf Jans
HEC Montréal, CIRRELT and GERAD
raf.jans@hec.ca

Ola Jabali
Politecnico di Milano and CIRRELT
ola.jabali@polimi.it

Quihua Zhong
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Abstract

In this work, we consider the one-warehouse multi-retailer problem with a
global carbon emission cap constraint (OWMR-EC). This constraint aims at
limiting the carbon emissions related to the production, setup and inventory
holding operations. We develop a penalized relaxation method to heuristically
solve the considered problem, both with and without the possibility of having
initial inventory. This heuristic uses in itself another heuristic that we propose
to solve the standard one-warehouse multi-retailer problem (OWMR). Our pe-
nalized relaxation method is tested on numerous instances adapted from the
literature. Our results indicate that the penalized method is able to find be-
tween 87.4 and 89.8 % of feasible solutions for this NP-hard problem, while
achieving an average optimality gap of about 2%. Furthermore, the results in-
dicate that the heuristic for the standard OWMR is also very effective. We also
perform a sensitivity analysis on the optimal solutions of the OWMR-EC to
better understand the implications of the carbon emission cap constraint. The
sensitivity analysis indicates that the marginal cost of reducing carbon emis-
sions increases as the emission cap decreases. The analysis also shows that the
correlation between the cost and emission parameters has an important impact
on the potential to further lower the emissions, compared to the emission of
the minimum cost solution.
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1 Introduction

Over the last decades, there has been a growing interest in incorporating sustainability
issues in supply chain management. The main concerns relate to global warming
and greenhouse gas (GHG) emissions which, if left at their current levels, will lead
to climate changes. The wish to have a “greener” image has also led individual
companies to reduce their carbon footprint and engage in more environmental friendly
production processes.

Carbon emissions considerations have been introduced into the basic lot sizing
models, primarily through constraints that limit the GHG emissions or through penal-
ties in the objective function. The considered emissions relate to production (e.g., by
using some machinery), setup (e.g., by using some extra power to set up a machine)
and inventory holding (e.g., by using cooling or heating systems). One of the earliest
work is the one of Benjaafar et al. [2] who study the impact of different policies on
carbon emissions. The policies include the carbon cap policy (where the total carbon
emission is limited by a fixed amount), the carbon tax policy (where there is a tax
paid per unit of carbon emitted), the carbon cap-and-trade policy (where companies
can emit more than the allowed cap but have to pay for it, or reversly firms that do
not emit beyond the cap can sell their unused carbon units), and the carbon offset
policy (where it is possible to buy carbon units from independent suppliers and/or
invest into projects whose goal is to reduce carbon emissions). Later, Absi et al. [1]
incorporate carbon emission constraints in the basic single item uncapacitated lot
sizing problem (SI-ULSP) model. They impose emission limits globally, per period,
and on a rolling horizon basis. In a similar way, Retel Helmrich et al. [7] address the
SI-ULSP with an emission cap constraint imposed on the entire planning horizon.

Carbon emission considerations also appear in multi level lot sizing problems.
The work of Memari et al. [6] is one such example. The purpose of this paper is to
contribute to the green lot sizing literature by integrating a carbon emission constraint
in the one-warehouse multi-retailer problem (OWMR). We call the resulting problem
OWMR-EC. Our aim is to develop an efficient and easy to reproduce algorithm for
this NP-hard problem.

2 A two-stage heuristic for the OWMR

We first propose a two-stage heuristic for the OWMR. In Section 3, we build upon
this heuristic to devise a heuristic for the OWMR-EC. The objective of the two stages
are to define a production plan for the warehouse, and to find a delivery plan for each
retailer, respectively. Specifically, the output of the first stage is used as an input for
the second stage.

The purpose of the first stage is to obtain a production plan for the warehouse. To
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simplify the complexity of the OWMR, we aggregate all retailers and treat them as
one. We therefore define an aggregate setup cost, and an aggregate inventory holding
cost. Treating all retailers as one, we obtain a two-level serial system which can be
seen as an OWMR for which the number of retailers is equal to 1. We solve this
OWMR using the multi-commodity formulation introduced by Cunha and Melo [3].
We call this first stage the single retailer aggregation stage (SRA).

In the second stage, we fix the production setup decisions for the warehouse ob-
tained in stage one and proceed to make the delivery plan for each retailer. We first
disaggregate the OWMR into |R| independent subproblems, where R is the set of
retailers. Indeed, when the production setup decisions are fixed and when there is no
initial inventory available at the warehouse, the OWMR reduces to |R| independent
subproblems, denoted by OWMRr. To solve each subproblem OWMRr, we devel-
oped a time-partitioning relax-and-fix heuristic (TPRF) and we adapted a dynamic
programming recursion for two-level uncapacitated problems.

The TPRF heuristic contains elements of the time-partitioning (TP) heuristic
used by Federgruen and Tzur [4] for the OWMR and the relax-and-fix heuristic (RF)
introduced by Stadtler [8] for a multi level lot sizing problem with a general product
structure and several constrained resources. The time-partitioning heuristic decom-
poses the time horizon into smaller intervals. The original problem is solved on these
smaller intervals and side constraints are added on the boundaries of these intervals
to obtain a feasible solution. The relax-and-fix heuristic is an iterative approach
that works with a limited number of binary setup variables. At each iteration of the
relax-and-fix heuristic, some binary variables are set to a value obtained in previous
iterations. The problem obtained is solved to optimality and an additional subset of
binary variables are set to their current value for the next iterations. The process
stops when there are no more free binary variables. To solve the OWMRr subprob-
lems to optimality over each time interval, we list all the possible delivery plans for
each retailer. We then evaluate the cost of each plan and chose the one with the low-
est total cost. In our preliminary experiments, this method has given the best results
in terms of computational time compared to the use of a general purpose solver to
solve the OWMRr subproblems to optimality over each interval.

The second method we use to obtain the retailers replenishment plan is based on
the dynamic programming recursion proposed by Melo and Wolsey [5] to exactly solve
a two-level uncapacitated lot sizing problem. Specifically, we adapt the recursion to
the OWMRr subproblems.

3 A heuristic for the OWMR-EC

We develop a penalized relaxation method (PR) to solve the OWMR-EC. We relax
the emission constraint and penalize it in the objective function with a penalty factor
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β (0 ≤ β ≤ 1). It results in a OWMR which is solved using the SRA-TPRF or
SRA-DP heuristic.

In the PR heuristic, we iteratively solve a series of OWMR problems using our
proposed heuristic. At each iteration, we check if the solution obtained satisfies the
emission constraint and if so, we compute its associated cost. After M iterations, the
feasible solution with the lowest cost is kept as the final solution of our heuristic. If,
for all iterations, we fail to obtain a feasible solution for the original problem, then
our heuristic fails to provide a feasible solution to the OWMR-EC. We further add
diversification and intensification phases on the PR heuristic to obtain more feasible
solutions.
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Abstract

Inspired by sustainability goals, we consider the problem of coordinating
shipments in a stochastic lot-sizing setting. There are multiple items, which
are shipped periodically from a single supplier to satisfy customer demands.
This demand is dynamic and stochastic, but we assume that demand distribu-
tions are known or can be estimated. Costs are associated with the amount
of inventory of each item and with each order of an item. There is an oppor-
tunity to achieve environmental savings by combining orders implying fewer
shipments. This leads to a bi-objective lot-sizing problem with coordinated
shipments where both the amount of shipments as well as costs need to min-
imized, such that a service level constraint is satisfied. We study a static-
dynamic version, where first the ordering periods are determined, and given
these ordering periods the ordering plan per item should be obtained. The
complexity of the problem lies in the fact that not each item may be ordered in
a potential ordering period, as fixed ordering costs are incurred for each order
placed. It turns out that our model can also be used to solve the coordinated
uncapacitated lot-sizing problem, which is a joint replenishment problem (JRP)
in a deterministic lot-sizing setting. We propose several heuristic approaches
to solve the model based on dynamic programming and test the performance
in a computational study, both on instances based on a practical case and on
JRP instances from the literature.

1 Introduction

We consider the problem of determining when and how much to ship from suppliers
to a warehouse. In our problem, there are multiple items (and one supplier for each
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of them), which are shipped periodically to a warehouse to satisfy the demand of
customers. Demand of customers is dynamic and stochastic, but we assume that de-
mand distributions are known for each item and each period. The cost are associated
with the amount on inventory of each item and with each order of an item. However,
based on a company case, there is also a second objective of minimizing the number
of periods in which deliveries take place to achieve environmental savings.

In our version of the problem, the order periods for each item have to be set
beforehand, but the quantity to be ordered can be determined when demand is known.
So at the start of the planning period, we have to select the periods in which orders
are placed. In the selected periods, we can then order the quantities necessary to
bring our inventory amounts to predetermined order-up-to levels. This approach is
known as the so-called static-dynamic one in the literature (see e.g. Tempelmeier and
Horst [3]). To ensure that a sufficient share of demand is fulfilled, a fill rate is set.
We assume that a shipment can be made instantaneously and the order quantity is
unlimited.

In fact, the problem under consideration is a stochastic bi-objective version of the
economic lot-sizing problem, as demand is stochastic and there are the objectives of
cost and the number of deliveries. In summary, the input of the problem is as follows:

T : number of periods,

K: number of items (product categories),

dkt: stochastic demand for item k in period t,

skt: set-up cost for item k in period t,

hkt: inventory holding cost per unit for item k in period t.

2 The model

In order to model the problem, define ckij as the cost of having a set-up at time i to
cover demand of item k for periods i, . . . , j with the next set-up at time j +1. These
are the cost ski of ordering item k at time i plus the expected costs of the ending
inventories in periods i, i+1, . . . , j, given that an order quantity is determined which
is sufficient to satisfy a given percentage of demand between i and j.

Since we take a static-dynamic approach and the cost parameters ckij can be com-
puted (analytically or numerically) upfront for given distributions, we can model the
problem as a MIP. In order to do that, we define the following decision variables:

xijk: binary variable equal to 1 iff the schedule for item k contains order cycle [i, j]

zt: binary variable equal to 1 iff there is a shipment in period t.
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We use an ϵ-constraint approach, meaning that we set a bound ϵ on the number
of deliveries (i.e.,

∑
i=1,...,T zt ≤ ϵ) and solve a cost minimization problem for each

ϵ ∈ {1, . . . , T} to get the Pareto frontier. For a given ϵ, the MIP model is as follows:

min
T∑

i=1

T∑

j=i

cijkxijk (1)

s.t.
T∑

j=1

x1jk = 1 ∀k (2)

j∑

i=1

xijk =
T∑

i=j+1

xj+1,i,k ∀j, k (3)

∑

j=i,...,T

xijk ≤ zi ∀i, k (4)

∑

i=1,...,T

zi ≤ ϵ (5)

xijk, zi ∈ {0, 1} ∀i, j, k (6)

Similar models can be found in Tempelmeier and Horst [3], except that we have an
additional constraint to bound the number of shipments.

Note that the efficient solutions on the Pareto frontier can also be used to solve
the coordinated uncapacitated lot-sizing problem (CULSP), where a major setup
cost is incurred for each shipment. Namely, one can show that an optimal solution
of CULSP can be found among the efficient solutions. Hence, any solution approach
for the above model also provides a solution approach for CULSP.

3 Heuristic solution approach

As larger instances cannot be solved in a reasonable amount of time by the MIP
model, we propose a heuristic approach based on dynamic programming (DP). Note
that there are two related problems that need to be solved. The overarching problem
is to find a set of m shipment periods V in {1, . . . , T} which minimizes total cost.
Given the ordering periods in V , for each item k we need to solve a subproblem in
which the objective is to find the shortest path (note that not each ordering period
has to be used for each item, as this will incur set-up cost).

In the DP approach we compute the optimal order schedule per item k during
the course of the algorithm. To formally describe this approach, we introduce the
following notation:

• vmj : minimum cost up till period j with at most m shipments,

• V m
j : set of ‘optimal’ order periods in interval [1, j] when having at most m order

periods,
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• SPk(V ; j) optimal cost for item k in [1, j] when only orders in periods of V are
allowed.

Note that SPk(V ; j) can be determined efficiently by a shortest path approach. The
DP approach is summarized in Steps 1 and 2 below. When computing the cost vmj
in (7) of Step 2, we take the ‘optimal’ order schedules V m−1

i−1 (i.e., a schedule with
m− 1 order periods for [1, i− 1]), we add an order period in i, and compute for each
item what the ‘optimal’ cost are in [1, j] when using only order periods in V m−1

i−1 ∪{i}.
Step 1: Initialization for j = 1, . . . , T

v1j =
∑

k c1jk
V 1
j = {1}

Step 2: DP recursion
for j = 2, . . . , T and m = 2, . . . , j we have the recursion

vmj = min

{
vm−1
j , min

i=2,...,j

∑

k

SPk(V
m−1
i−1 ∪ {i}); j)

}
(7)

set i∗ = argmini=2,...,j

∑
k SPk(V

m−1
i−1 ∪ {i}); j)

if vmj < vm−1
j , then V m

j = V m−1
i∗−1 ∪ {i∗}, otherwise V m

j = V m−1
j

The DP approach can be further refined by not only keeping track of the best, but
of the q best solutions. The total complexity of this refined heuristic is O(qKT 5).

The algorithm has been tested both on instances based on a practical case and
on CULSP instances from the literature (Boctor et al. [1] and Robinson et al. [2]).
Preliminary computational tests show that the heuristic approach performs well with
optimality gaps of not more than 1% when q = 10, and with further improvements
being attained often leading to an optimal solution when we increase q to 20.
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Abstract

Traditional supply chain system is the open-loop supply chain in which
goods/commodities are shipped from manufacturers/suppliers (sourcing facil-
ities) to distribution centres, then to retailers, and finally to end customers.
However, sustainable supply chain management has received significant atten-
tion among both researchers and practitioners. This results in closing the loop
by collecting used products from customers, transporting them to collection
centres, and finally to sourcing facilities for recycling/remanufacturing/refurbishment.
This research studies a closed-loop supply chain with hybrid retailers/collection
centres, which embraces production planning and facility location problems,
proposes a mathematical formulation for the problem, and then solves it us-
ing relax-and-fix and fixe-and-optimise heuristics. Preliminary computational
results associated with a realistic case study are reported.
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Abstract

The transition to a new renewable energy model has brought forth new roles
and opportunities for individuals, who can participate as users, producers or
both, known as prosumers [5]. As a result, energy collectives have emerged
to facilitate the production and self-consumption of renewable energy [1, 2, 3,
4]. Among the various types of small-scale energy collectives, microgrids have
gained prominence. In these networks, multiple users share a distributed energy
resource (DER) with the aim of establishing a semi-autonomous system that
can operate both connected to the main power grid and in isolation. Numerous
studies have focused on the design and management of these microgrids [7, 6, 8],
primarily aiming to minimize costs for the community.

Since DERs offer more affordable energy, but may not be able to fully meet
the demand of all users, they will therefore compete with each other for these
cost-effective DER energy resources, particularly during peak demand hours.
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Consequently, there is a need of considering fairness allocation among smart
homes that share the DER in the microgrid. To the best of our knowledge,
the closest study addressing this aspect is presented in [9], where fairness is
measured by minimizing the discrepancy between the cost assigned to each
home and the cost it would have incurred if it had been the only home in the
microgrid.

In this work, we investigate a community consisting of different homes,
a shared DER, and a common energy storage system. Each home has an
energy demand to satisfy over a discrete planning horizon. The demand can
be fulfilled either by using the DER, the battery, or by purchasing electricity
from the main power grid. Excess energy can be stored in the battery or sold
back to the main grid. The objective is to find a supply plan that provides
a fair allocation of renewable energy while minimizing the total cost of the
microgrid. We formulate the problem as a mixed-integer linear programming
model, considering various fairness metrics such as the proportional allocation
rule and the min-max fairness. We evaluate the obtained predictive models
using real instances with up to 7 houses and a one-day time horizon with 15-
minute time intervals. The data used for these instances are sourced from E4C1

and pertains to a smart building located in France.
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Abstract

We propose a novel model formulation for a multiproduct, capacitated lot-
sizing and scheduling problem that incorporates sustainable energy technologies
and energy storage. The optimization problem accounts for renewable energy
generation, limited energy storage, connection to the national grid, and energy
trading. The objective is to determine a feasible production plan that minimizes
holding, setup, and energy costs. A two-stage solution approach based on
the fix-and-optimize heuristic (F&O) is applied. First numerical results are
presented to demonstrate the performance of the proposed solution approach.

1 Introduction
Energy consumption and saving have become more important not only since the
global energy crisis in 2022, but also in the view of current climate change and its
consequences. The need to reduce energy consumption and to shift from fossil energy
sources to sustainable energy technologies such as solar and wind power is widely
discussed and promoted, and governments are introducing regulations such as emis-
sion taxes. Industry, in particular, has a large share and responsibility in the change
process due to its enormous energy consumption. Electricity in particular plays a key
role.
It is therefore in the interest of the manufacturing industry to improve and optimize
its overall energy concept to contribute to a more sustainable energy management.
Industrial companies can install their own on-site, decentralized power generation
plants, e.g. based on photovoltaics (PV). To enable efficient integration and use of
intermittent renewable energy sources, energy storage systems (ESS), especially based
on lithium-ion batteries, play an essential role.
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To bundle these aspects and to manage an energy-oriented production efficiently, a
production planning is required which considers energy aspects and flows. In partic-
ular, in the area of energy-oriented simultaneous lot sizing and scheduling, there is a
lack of literature that addresses the difficulty of coordinating the production schedule
with the energy schedule (see [1]). A first model formulation that considers simul-
taneous lot sizing and scheduling, as well as the integration of renewables, energy
trading, and storage, is proposed by [4]. However, their approach is not suitable for
realistic scenarios due to its poor solution performance. Moreover, it hardly considers
ESS specifications. Therefore, we present a new model formulation for a lot-sizing
and scheduling problem that incorporates sustainable energy technologies and en-
ergy storage. Our first numerical results show that, in contrast to [4], the proposed
solution approach is able to solve larger instances as well.

2 Problem statement and modelling
We present a model formulation for the so-called EO-CLSD-ESS (Energy-Oriented
Capacitated Lot-Sizing with Sequence Dependent setup costs and energy-storage).
The model formulation is based on the well-known CLSD proposed by [2]. The goal
is to determine a production schedule that minimizes holding, setup, and energy costs
and captures the energy flows shown in Figure 1.
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Figure 1: Energy flow. (cf. [4])

The main focus of EO-CLSD-ESS is to balance production and energy. Therefore,
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two types of planning periods are introduced: production-oriented macro periods t
and (micro) energy periods r, each with constant power and length (60 min). Short
energy periods r are necessary to better reflect (un)loading processes and energy
prices with respect to volatile energy from sustainable energy technologies. Within a
macroperiod t four different machine states are considered: ”Production”, ”Setup”,
”Idle/Conservation”, and ”Off”; all four must be assigned to the corresponding energy
period r in the correct sequence. Therefore, start and end points are defined to assign
the energy supply from period r to the corresponding machine states. The figure 2
gives an overview.
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Figure 2: Period structure of EO-CLSD-ESS

3 Heuristic solution approach
Since it is impossible to solve the EO-CLSD-ESS to optimality even for smaller in-
stances with a modern MIP solver in a reasonable time, a heuristic solution approach
consisting of two steps is proposed. In the first step, energy aspects are not considered
and only the basic CLSD model is solved using the MIP solver Gurobi. This solution

3

26



serves as an initial solution for the application of a Fix&Optimize heuristic (cf. [3])
with different decomposition strategies in the second step. Preliminary tests have
shown that two variants are most suitable: a) period-oriented decomposition (Var.
1), b) product-oriented followed by period-oriented decomposition (Var. 2).
Three problem classes (PCs) are considered in our numerical study. The largest PC
(PC III) consists of 20 products and 10 macro periods. This corresponds to a work
week of 5 days with 2 shifts of 8 hours each. Within each PC, 64 randomly gener-
ated test instances (TIs) are examined. Preliminary computational results show that
Gurobi, running on a high performance computing cluster at RPTU Kaiserslautern-
Landau, could not find the optimal solution for a TI within a given time frame of
7200 seconds. Table 1 shows the high solution quality of our solution approach.

PC I PC II PC III
Gurobi Var. 1 Var. 2 Gurobi Var. 1 Var. 2 Gurobi Var. 1 Var. 2

TimeGur [in sec] 7200 - - 7200 - - 7200 - -
RelGap [in %] 3.43 - - 12.14 - - 7.43 - -
TimeHeu [in sec] - 123 226 - 725 1186 - 719 1772
DevGH

UB [in %]* - 2.19 0.86 - 6.71 -0.27 - 1.57 -0.12

Table 1: Numerical results

*For each TI, the deviation of the objective function value obtained by the heuristic objV alHeu
TI from

the Gurobi reference solution objV alGur
TI is determined as follows: DevGHUB

TI =
objV alHeu

TI −objV alGur
TI

objV alGur
TI

.
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Abstract

Traditional supply chain system is the open-loop supply chain in which
goods/commodities are shipped from manufacturers/suppliers (sourcing facil-
ities) to distribution centres, then to retailers, and finally to end customers.
However, sustainable supply chain management has received significant atten-
tion among both researchers and practitioners. This results in closing the loop
by collecting used products from customers, transporting them to collection
centres, and finally to sourcing facilities for recycling/remanufacturing/refurbishment.
This research studies a closed-loop supply chain with hybrid retailers/collection
centres, which embraces production planning and facility location problems,
proposes a mathematical formulation for the problem, and then solves it us-
ing relax-and-fix and fixe-and-optimise heuristics. Preliminary computational
results associated with a realistic case study are reported.
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Abstract

This paper discusses the multi-level capacitated lot-sizing problem with
linked lot sizes and backorders (MLCLSP-L-B) considering deterministic prod-
uct shelf-life applied on tablets manufacturing processes. Shelf-life is modelled
by integrated shelf-life rules in tablets manufacturing processes. Thus, the
MLCLSP-L-B is extended by integrated shelf-life rules (MLCLSP-L-B-SL). An
exact mathematical problem formulation is provided. Three established bench-
mark approaches from literature, namely First In-First Out (FIFO), First-
Expire First-Out (FEFO) and isolated shelf-life rules, are used to discuss model
outcomes compared to MLCLSP-L-B-SL. Evaluation based on anonymized real-
world data of five multi-level tablets manufacturing problem instances. Addi-
tionally, proposed solutions are compared in terms of manufacturing costs and
shelf-life conflicts. Finally, planning rules and managerial insights are given for
tablets manufacturing processes.

1 Introduction

Effective containment of globally raising prevalence of chronic symptoms and inci-
dence of novel viral diseases requires products to remain stable in medicinal effects
across varying treatment periods. Thus, governmental regularities around the world
have defined that all prescription tablets have a shelf-life label to indicate when they
are expire. Those regulatory authorities require comprehensive stable medicine for
market approval. Moreover, [1] highlighted that tablets shortage situations caused
by shelf-life issues became a huge image loss through publicity in the last decades.
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(a) Example of a tablets manufacturing process

(b) Example of (remaining) shelf-life dependencies to all involved ingredients for one batch
of P31

Figure 1: Illustration of shelf-life impacts on tablets manufacturing

Hence, pharmaceutical tablets manufacturers spend much effort steering manufactur-
ing processes to avoid competitive disadvantage by delivering medicine with sufficient
long shelf-life, see [2].

[3] grouped a tablets manufacturing process into three stages, namely the produc-
tion of active pharmaceutical ingredients (API), the bulk, and the packaging stage.
The stages consist of multiple machines, which can produce several products, but only
one product at the same time. Figure 1a visualizes an example of such a manufactur-
ing process: The API stage consists of reactors, which consume raw materials from
tanks and produce two kinds of active ingredients through chemical reactions. Then,
mixers produce two sorts of tablets by granulating, mixing, pressing, and enamel-
ing those ingredients. The tablets can either be stored in silos, or processed into
finished goods in the packaging stage. The packaging stage consists of packaging
lines, which put tablets and recipes either into folding boxes of different sizes. The
finished goods can either be stored in stock or transported directly to distribution
centers. Ingredients have a huge impact on finished good shelf-life stability in multi-
level manufacturing processes, see [4]. These shelf-life dependencies on ingredients are
modeled by integrated shelf-life rules in tablets manufacturing processes. If no depen-
dencies are considered, the rule is named isolated shelf-life rule. Figure 1b illustrates
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the general behavior of ingredient’s impact on the remaining shelf-life of finished good
P31: Whenever the API material P11 is produced, then isolated shelf-life rule returns
fixed 40 periods. The material is stored for 10 periods. Hence the remaining shelf-life
is 30 periods. This batch is consumed by bulk products P21 and P22. Now, the
integrated shelf-life rule applies a formula on the remaining shelf-life of P11. The
shelf-life equals 25 and 28, and the remaining shelf-life reduces to 20 and 8 periods
due to storage time for P21 and P22, respectively. With an analog calculation logic,
finished good P11 turns out to have a remaining shelf-life of 9 periods. If remaining
shelf-life is greater than 0, then no shelf-life conflicts exist.

Planning teams often focus on usually one year to derive midterm tactical pro-
duction plans. They identify production, stock, and backorder quantities for each
material, machine, and period in the planning horizon, such that inventory, backo-
rder, and setup costs are kept at a minimum, demands are fulfilled on time, capacities
are not exceeded, and shelf-life issues are avoided. Nonetheless, the practice shows,
that shelf-life conflicts occur once in a while due to a lack of modeling integrated
shelf-life rules in MRP procedures in planning systems (classic MRP and MRP2
procedures apply only isolated shelf-life rules). If expired batches occur, then the
proposed production plan is rejected by business due to very strict regulations, and
significant efforts (R&S costs) have to be taken into account to reschedule the produc-
tion system. Thus, planning teams elaborate production plans containing no shelf-life
conflicts so that proposed lot sizes don’t lack in cost-efficiency or even feasibility.

The MLCLSP-L-B is well established in literature and already used in a wide
range of applications in process industries. It is a time-discrete model, that balances
production quantities, inventories, backorders, and setup operations for each product
and period of the planning horizon, such that setup, inventory, and backorder costs
are kept at a minimum, deterministic demands are fulfilled, and resource capacities
are not exceeded. Among this research, new solution approaches consider inventories
affected by shelf-life and novel formulations were established, see [5] and [6]. This
paper contributes to existing literature in three aspects. First, it provides the first ex-
act model formulation of integrated shelf-life rules for the MLCLSP-L-B. Second, the
paper discusses performance of common inventory policies, isolated, and integrated
shelf-life rule model formulations. Third, it shares problem instances for lot-sizing
from real-world tablets manufacturing processes and managerial insights derived from
presented solution approaches based on these real-world problem instances.

2 Problem definition

This section provides the MILP formulation of the MLCLSP-L-B. Each material
is allocated on exactly one machine, but one material might be issued by several
successor materials. Table 1 summarizes model decision variables and parameters.

3

32



The model based on a direct extension of [7] and [8].It is formulated as follows:

minZ = min

{∑

p∈P

∑

t∈T
csup x

su
p,t + cbop x

bo
p,t + cinvp xinvp,t

}
, s.th. (1)

xinvp,t−1 + xbop,t + xpp,t−tasp
= xinvp,t + xbop,t−1 + dp,t +

∑

s∈Psuc
p

rp,sx
p
s,t, (2)

∑

s∈Pm

tsus x
su
s,t + tpsx

p
s,t ≤ bm,t, (3)

xpq,t ≤Mm,q,t

(
xsuq,t + xlq,t−1

)
, (4)

∑

s∈Pm

xls,t ≤ 1, (5)

xlq,t − xsuq,t − xlq,t−1 ≤ 0, (6)

xlq,t + xlq,t−1 − xsuq,t + xsur,t ≤ 2, (7)

xinvp,0 = 0, xlq,0 = xlm,q, x
bo
p,0 = 0, xbop,T = 0, (8)

xsup,t ∈ {0, 1}, xlp,t ∈ {0, 1}, xbop,t ≥ 0, xpp,t ≥ 0, xinvp,t ≥ 0,

∀m ∈ M, p ∈ P , q, r ∈ Pm, q ̸= r, t ∈ T .
(1) aims to minimize the sum of setup, inventory, and backorder costs. The material
balance equation is covered by (2), capacity constraints are included by (3), (4) binds
a positive production quantity to a setup in the same or a linked lot size in the last
period, (5) satisfies that at most one linked lot size per period occur, (6) guarantees
that a linked lot size is only allowed when a setup in the same period or a linked lot
size in the last period take place and (7) synchronizes production runs that continue
over more than two periods on a machine m ∈ M. Moreover, (8) sets the initial
inventory and setup state, and the initial and final backorder quantities, respectively.
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xsup,t Equals 1, if p ∈ P is prepared for setup in t ∈ T , otherwise 0
xlp,t Equals 1, if the production of p ∈ P is continued from t to t + 1 on period domain T0,

otherwise 0
xpp,t Production quantity of product p ∈ P in period t ∈ T
xinvp,t Inventory quantity of a product p ∈ P in period t ∈ T0
xbop,t Backorder quantity of a product p ∈ P in period t ∈ T0
M Set of machines {1, . . . ,M}
P Set of products {1, . . . , P}
T Set of periods {1, . . . , T}
T0 Set of periods including initial period {0, . . . , T}
Psuc
p Set of successors of a product p ∈ P

Pm Set of products that can be produced on machine m ∈ M
bm,t Capacity of machine m ∈ M in period t ∈ T
dp,t Demand of product p ∈ P in period t ∈ T
csup Setup cost for a product p ∈ P
cinvp Inventory holding cost for a product p ∈ P
cbop Backorder cost for a product p ∈ P
tsup Setup time for a product p ∈ P
tpp Production time for a unit of product p ∈ P
tasp Advanced shift for a product p ∈ P
rp,q Number of units of product p ∈ P required to produce one unit of successor product

q ∈ Psuc
p

xlm,p Initial setup for all p ∈ Pm on m ∈ M, such that
∑

p∈Pm
xlm,i ≤ 1

Mm,p,t Large number, e.g. Mm,p,t = min{∑τ∈T ,τ≥t dp,τ , bm,t/t
p
p} for m ∈ M, p ∈ Pm and

t ∈ T

Table 1: Decision variables, sets and parameters of the MLCLSP-L-B
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Abstract

We consider the No-idle Permutation Flowshop Scheduling Problem (NPFSP)
with a total tardiness criterion. We present two Mixed Integer Linear Pro-
gramming (MILP) formulations based on positional and precedence variables,
respectively. We study six local search procedures that explore two different
neighborhoods by exploiting the MILP formulations. Our computational ex-
periments show that two of the proposed procedures strongly outperform the
state-of-the-art metaheuristic. We update 63% of the best known solutions of
the instances in Taillards’ benchmark, and 77% if we exclude those instances
for which we proved that the previous best known solutions are optimal.

1

35
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Abstract

The problem arises in the automotive industry and consists of organizing
batch production on an injection machine to meet demand from the downstream
assembly process with decoupling buffers between them. The considered time
horizon is 24 hours, divided into 5 minutes time slots. Sequence-dependent
setup times, minimum batch size, and stock coverage are considered. A multi-
objective integer linear programming (ILP) model is proposed and then vali-
dated through experiments on various instance sizes.

1 Introduction & literature review

The problem arises in the automotive industry and concerns an injection machine that
feeds the downstream assembly process with a decoupling buffer between them. The
goal is to determine the start time and duration of each batch so that demand occur-
ring every 5 minutes from the assembly is met, while buffers are kept within predefined
ranges. One of the related problems in the literature is the lot-sizing and schedul-
ing problem (LSSP) which aims to minimize production, setup, and holding costs by
simultaneously optimizing lot sizes and their schedule [1]. In the discrete lot-sizing
and scheduling problem (DLSP) the planning horizon is divided into small periods,
only one setup per period is allowed, with the so-called all or nothing assumption [2].
Many studies have addressed the same problem with a different approach known as
batch scheduling problem (BSP) which refers to schedule similar jobs contiguously in
order to avoid setup times or setup costs [3]. The DLSP can be transformed into a
BSP, as highlighted by [4]. Some lot-sizing and scheduling problems in the injection
molding context implement similar characteristics, such as backorders, stock cover-
age, buffer, and batch constraints. These types of problems have been showed to be
NP-hard [5]. Comparatively to BSP which considers due date jobs in input, we start
from a given demand to simultaneously determine batch sizes and their sequence. The
main difference from lot-sizing lies in the lengths and granularity of the time horizon.
In addition, our work ignores stock holding costs, and backorders are allowed. Both
setup state conservation and all-or-nothing assumption are considered. Finally, we
implement a multi-objective optimization problem using the lexicographic method.
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2 Model formulation & experiments

This model considers K physical products to be produced over a discrete time horizon
t ∈ [1, T ]. Setups are sequence-dependent and we introduce K fictitious dummy
products which are used to indicate an idle state. Coherently, we define j ∈ J |J =
[1, K2 + K] the set of all the possible states allowed on the resource and composed
of Jk = [1, K] the set of production states, J c = [K + 1, K2] the set of setup states
and J i = [K2 +1, K2 +K] the set of idle states. We use the index k when j is in Jk.
The demand for item k at time slot t is given by dk,t. The buffer capacity, the stock
coverage level, and the buffer level are defined by BMaxk, BMink,t and bk,t. The
production rate qk represents the number of products k that can be released in the
buffer at each time slot. A binary matrix F (J × J) is introduced to define the rules
of the machine states’ transition. If fj,j′ = 1 then for two successive time slots the
transition from the state j to the state j′ is allowed, otherwise it is forbidden. The
vector vj contains respectively the information for minimum batch size, setup times
and vj = 1 for all the idle states. Ij,0 and i0 represent the initial buffer levels and
the initial state of the machine. At each time slot, a single state is activated by a
binary variable xj,t, which is 1 if state j is activated at time t, 0 otherwise. Finally,
the variables hk,t and wk,t represent the backorders and coverage stockouts of product
k at time t. Thus, the ILP model can be formulated as follows:

Min.Obj1 =
∑

j∈Jk

∑

t∈T
hj,t

Min.Obj2 =
∑

j∈Jk

∑

t∈T
wj,t

Max.Obj3 =
∑

j∈Jk

bj,T

vj∑

t=1

xj,t ≥ vjxj,1, ∀ j ∈ J (1)

t+vj−1∑

t′=t

xj,t′ ≥ vj(xj,t − xj,t−1), ∀ t ∈ {2, . . . , T − vj}, ∀ j ∈ J (2)

T∑

t′=t

xj,t′ ≥ (T − t+ 1)(xj,t − xj,t−1), ∀ t ∈ {T − vj + 1, . . . , T}, ∀ j ∈ J (3)

∑

j∈J
xj,t = 1, ∀t ∈ {1, . . . , T} (4)
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∑

j∈J
fi0,jxj,1 ≥ 1 (5)

∑

i∈J
fi,jxi,t−1 ≥ xj,t − xj,t−1, ∀ t ∈ {2, . . . , T}, ∀ j ∈ J (6)

bj,t = Ij,0 +
t∑

t′=1

qjxj,t′ −
t∑

t′=1

dj,t′ + hj,t, ∀ j ∈ Jk (7)

wj,t ≥ BMinj,t − bj,t, ∀ t ∈ {1, . . . , T}, ∀ j ∈ Jk (8)

bj,t ≤ BMaxj, ∀ t ∈ {1, . . . , T}, ∀ j ∈ Jk (9)

xj,t ∈ {0, 1}, ∀ t ∈ {1, . . . , T}, ∀ j ∈ J (10)

hj,t, wj,t, bj,t ∈ N, ∀ t ∈ {1, . . . , T}, ∀ j ∈ Jk (11)

The three objective functions are prioritized with a lexicographic method and rep-
resent backorders minimization, coverage stockouts minimization, and maximization
of buffers. Constraints (1), (2) and (3) ensure the minimum batch size and the respect
of setup times. Constraints (4) ensure the activation of one and only one state at
each time slot. Constraints (5) and (6) regulate the correct machine states transition.
Constraints (7) define the flow conservation constraints for buffers. Constraints (8)
define coverage stockouts and constraints (9)-(11) define the range of variables. To
assess the proposed ILP’s performances, 400 instances have been solved using Cplex
as shown in Table 1.

Each class, composed of 50 instances is identified by a number of products and
time slots. All the other parameters of the problem are integers randomly generated
according to a uniform distribution inspired by real data: demands ∈ [0, 4]; setup
times ∈ [4, 8] time slots; minimum batch sizes ∈ [10, 14]; idle states = 1; production
rates ∈ [4, 7]; buffer capacities ∈ [150, 300]; initial buffer levels ∈ [0, 100]. Stock

Class Products Time slots Time(sec) Gap(%)
1 3 72 2.04 0
2 5 72 10.64 0
3 7 72 35.27 0
4 5 90 55.61 0
5 6 90 211.34 0
6 5 108 436.40 0
7 6 108 993.26 0
8 [8,16] 288 3600 31.18

Table 1: Numerical results of the analyzed instances
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coverage = 24 time slots. i0, the machine state before starting the optimization
∈ [1, K]. Overall, calculation times increase as the combination of K and T increases.
For the 72-time slot instances, the ILP model achieves optimal results at a maximum
of 35 seconds, and the largest class optimally solved required on average more than
15 minutes. With class 8 we replicated the real-world data managed by the company
on a daily basis. A time limit of 60 minutes was set for the solver and an average gap
equal to 31.18% was obtained with respect to Obj1. From this experimental results,
we conclude the ILP model solves small and medium instances but it is not able
to tackle real-life instances which suggests to develop heuristics approach to provide
better solutions than those obtained with the solver using the proposed ILP.

3 Conclusions & future works

We propose a multi-objective ILP model to deal with a simultaneous batch sizing
and sequencing problem where both setups and minimum batches extend over several
consecutive time slots. We adopt a lexicographic optimization approach to prioritize
objectives according to the company’s requirements. Numerical experiments show the
ability of the ILP to solve small and medium instances however we need to investigate
a heuristics and/or metaheuristics approach to tackle real-life problems efficiently.
Another immediate perspective is to propose a dynamic approach for rescheduling
regarding demand changes with a rolling horizon. Next, we are going to extend our
study to the parallel machine’s environment while common cranes and operators have
to be shared for setup operations.
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Abstract

“Inventory Analytics” provides a comprehensive and accessible introduction
to the theory and practice of inventory control. The book outlines the founda-
tions of inventory systems and surveys prescriptive analytics models for deter-
ministic inventory control. It further discusses predictive analytics techniques
for demand forecasting in inventory control and also examines prescriptive an-
alytics models for stochastic inventory control.

Inventory Analytics is the first book of its kind to adopt a Python-driven ap-
proach to illustrating theories and concepts via computational examples, with
each model covered in the book accompanied by its Python code. A GitHub
repository containing all Python code discussed complements the book. Origi-
nating as a collection of self-contained lectures, the book will be an indispens-
able resource for practitioners, researchers, teachers, and students alike.

The aim of this extended abstract is to showcase the content of this book.

1 Introduction

Inventory control1 is a thriving research area that plays a pivotal role, as a building
block, in supply chain planning. For this reason, it attracts the attention of both
industry and academia.

Selected topics from inventory control are regularly covered in academic pro-
grammes, at both undergraduate and graduate levels, offered by business schools,
industrial engineering, and applied mathematics departments.

Problems faced by managers who engage with the challenges posed by inven-
tory systems are generally simple to state, but complex to address. Obtaining good
solutions to these problems requires a blend of expertise drawn from a variety of
quantitative disciplines, such as operations research, economics, mathematics, and
statistics.

1These sections are excerpts from “Inventory Analytics” (https://doi.org/10.11647/OBP.
0252) by R. Rossi, which is released under a Creative Commons Attribution 4.0 International (CC
BY 4.0) license (https://creativecommons.org/licenses/by/4.0).
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The majority of existing books in inventory control theory adopt, in my view,
an overly mathematical and abstract style of presentation. This style appeals to re-
searchers in the area, but makes these books often inaccessible to practitioners, as well
as to some business school researchers who have not received advanced mathematical
training such as that offered by applied mathematics, computer science, or industrial
engineering curricula. A book with a more applied, hands-on focus is missing.

“Inventory Analytics” [1] aims to fill this void. It is aimed at those who want to
learn the basics of modelling aspects of inventory control problems without needing to
resort to the technical literature; at those who, despite lacking advanced mathematical
training, want to access seminal findings in this field, and to apply well-established
models by employing state-of-the-art solvers and modelling languages.

The book requires a working knowledge of Python; it is therefore aimed at readers
who have, at the very least, taken a basic Python programming course. Apart from
this, the book aims at stripping mathematical results to the bare minimum while
preserving sufficient rigour, and at focusing on the practical relevance of these results
in the context of the implementation of solution methods for problems typically faced
by a manager who juggles with day-to-day inventory control challenges.

The book is structured as follows. It first provides a general introduction to
inventory systems, followed by an overview of basic deterministic models. All these
models are paired with their respective Python implementation, which can be tested
on motivating examples that are presented throughout. The book is complemented by
a GitHub repository that contains all Python code discussed [2]. After showcasing
established models in deterministic inventory control, the reader is introduced to
forecasting. Forecasting is often only briefly surveyed in existing books on inventory
control; with the readers often directed to specialised textbooks, which are again often
inaccessible to practitioners or individuals without suitable advanced mathematical
training. However, forecasting is a crucial aspect of any practical inventory challenge.
This work covers the most well-known forecasting models in a hands-on and visually
appealing manner. The introduction of forecast errors paves the way to stochastic
inventory control models, which are presented in the following sections. Once more,
the most well-known stochastic inventory control policies are discussed in a hands-on
fashion, with supporting code snippets and motivating examples. The last chapter
briefly presents seminal results in the context of the control of multi-echelon inventory
systems. Finally, an appendix provides the relevant formal backgrounds on a number
of topics that are leveraged throughout the main chapters.
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2 Inventory Analytics

This book originates as a collection of self-contained lectures. These lectures are
divided into an introduction to inventory control, which outlines the foundations
of inventory systems; followed by three chapters on deterministic inventory control,
demand forecasting, and stochastic inventory control.

Beside Inventory, the title of the book refers to Analytics. This is nowadays
a concept that has been inflated with a plethora of meanings, so that it becomes
difficult to understand exactly what each of us means when we refer to it. The
Cambridge Dictionary defines Analytics as “a process in which a computer examines
information using mathematical methods in order to find useful patterns.” However,
this appears to be quite a restrictive definition for our purposes.

To better understand the nature of Analytics, it is useful to observe that Ana-
lytics is often broken down into three parts: descriptive, predictive, and prescriptive.
Descriptive Analytics is concerned with answering the question: “what happened?”
Predictive Analytics is concerned with answering the question: “what will happen?”
Prescriptive Analytics is concerned with answering the question: “how can we make
it happen?” These are clearly complex questions that cannot be answered by mere
number crunching on a computer: to answer these questions a decision maker must
leverage soft as well as hard skills.

Many tend to think that the Analytics phenomenon is a recent development re-
lated to widespread availability of computing power. However, in his work “De Inven-
tione,” the Roman philosopher Cicero states that “there are three parts to Prudence:
Memory, Intelligence, and Foresight.” It is clear that Memory is the skill required
to answer the question “what happened?”; Foresight, that required to answer the
question “what will happen?”; and Intelligence, that required to answer the question
“how can we make it happen?” It appears then that Analytics is just a contemporary
rebranding of an art that has been known for millenia. Prudentia is the ability to
govern and discipline oneself by the use of reason. Inventio is the central canon of
rhetoric, a method devoted to systematic search for arguments. Incidentally, inven-
tio also means inventory. In fact, when a new argument is found, it is invented, in
the sense of “added to the inventory” of arguments. Prudentia and Inventio are the
foundations upon which the art of Rhetoric stands.

It must not surprise us then that Analytics plays a prominent role in inventory
management. Inventory management finds its roots into the practice of late medieval
and early Renaissance merchants. The invention of double-entry bookkeeping (alla
Veneziana) is typically attributed to Frà Luca Pacioli (c. 1447 – 19 June 1517). Pa-
cioli leveraged Johannes Gutenberg’s new technology to disseminate and popularise
accounting practices that had been in use among Venetian merchants for a long time.
However, Pacioli did not simply disseminate existing practices, he reinterpreted these
practices within the framework of Cicero’s rethoric. In “De Inventione,” Cicero ex-
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plains that there are five canons, or tenets, of Rhetoric: Inventio (invention), Disposi-
tio (arrangement), Elocutio (style), Memoria (memory), and Pronuntiatio (delivery).
Pacioli’s “Tractatus de computis et scripturis” (1494), is divided into two main sec-
tions: (i) the Inventory, and (ii) the Disposition — the influence of Cicero’s work is
apparent. Pacioli writes: “In order to conduct a business properly a person must:
possess sufficient capital or credit, be a good accountant and bookkeeper, and possess
a proper bookkeeping system.” In “the Inventory,” Pacioli writes “The merchant
must prepare a list of his inventory. Items that are most valuable and easier to lose
should be listed first. [. . . ] The inventory should be carried out and completed in a
single day. [. . . ] The inventory is to include the day that the inventory was taken,
the place, and the name of the owner.” In contemporary terms, Pacioli describes
a so-called “physical inventory,” the process by which a business physically reviews
its entire inventory — as opposed to so-called “cycle counts,” which focus on specific
subsets of items. In “the Disposition,” Pacioli describes the necessary books and rules
to implement double-entry bookkeeping.

Pacioli’s work represents a quantum leap in the realm of descriptive inventory
analytics, a discipline that would evolve into a fundamental part of inventory man-
agement. However, no progress was made in the realm of predictive and prescriptive
inventory analytics until late 1800, when Edgeworth, in his “Mathematical Theory of
Banking,” used the central limit theorem to determine cash reserves needed to satisfy
random withdrawals from depositors, thus embedding a predictive probabilistic model
within a prescriptive mathematical model to support inventory control decisions.

From these early results, over the past 150 years, inventory control has evolved
into an independent discipline. The aim of this book is to provide an introduction to
this discipline.

After introducing the foundations of inventory systems, in chapter “Deterministic
Inventory Control” we survey prescriptive analyticsmodels for deterministic inventory
control, in chapter “Demand Forecasting” we discuss predictive analytics techniques
for demand forecasting in inventory control, which originate in the realm of time
series analysis and forecasting. Finally, in chapters “Stochastic Inventory Control”
and “Multi-echelon Inventory Systems” we survey prescriptive analytics models for
stochastic inventory control.
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Abstract

The (R, s, S) is a stochastic inventory control policy widely used by practi-
tioners. In an inventory system managed according to this policy, the inventory
is reviewed at instant R; if the inventory is lower than the reorder level s an or-
der is placed. The order’s quantity is set to raise the inventory level to the order-
up-to-level S. This paper introduces a new stochastic dynamic program (SDP)
algorithm to compute the (R, s, S) policy parameters for the non-stationary
stochastic lot-sizing problem. In recent work, [1] present an approach to com-
pute optimal policy parameters under such assumptions. We present the first
formulation of the (R, s, S) problem as a functional equation of an SDP model.
This model is an extension of Scarf’s (s, S). A simple implementation of the
model requires a prohibitive computational effort to compute the parameters.
However, we can speed up the computations by using K-convexity property
and memoisation techniques. The resulting algorithm is considerably faster
than the state-of-the-art, extending its adoptability by practitioners.

1 Problem description

This work considers the single-item, single-stocking location, stochastic inventory
control problem over a T -period planning horizon. The demand’s stochasticity and
non-stationarity of period t are modelled through the random variable dt. Cumulative
demand of periods t to the beginning of period j takes the form of dt,j with j > t. If
the demand in a given period exceeds the on-hand inventory, the excess is backlogged
and carried to the next period. Under these assumptions, the (R, s, S) policy takes
the vectorial form form (R, s,S), with R = (R1, . . . , RT ); where Rt , st and St denote
respectively the length, the reorder-level and order-up-to-level associated with the
t-th inventory review.

Policies are compared based on their expected cost. Stocktaking has a fixed cost
of W . We denote by Qt the quantity of the order placed in period t. Ordering costs
are represented by a fixed value K and a linear cost, but we shall assume that the
variable cost is zero without loss of generality. At the end of each period, a holding
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cost h is charged for every unit carried from one period to the next. In case of a
stockout, a penalty cost b is charged for each item and period. We denote with It
the closing inventory level for period t, making I0 the initial inventory. The order
quantity Qt is fixed at every review moment before the demand realisation to raise
the inventory level to St. The order is placed only if t is a review period and the open
inventory is below the order level st.

We consider the problem of computing the optimal (R, s,S) can be formulated as
follow:

C1(I0) ≜ min
(R,s,S)

f1(I0, Q1, R1) + E[C1+R1(I0 +Q1 − d1,1+R1)] (1)

Where C1(I0) is the expected cost of the optimal policy parameters starting at
period 1 with the initial inventory I0. In general, Ct(It−1) represent the expected
inventory cost of starting at period t with open inventory It−1. While, ft(It−1, Qt, Rt)
is the expected cost of a review cycle starting in period t and ending up in period t+Rt;
it comprises review, ordering, holding and penalty cost for the review cycle. Ct(It−1)
values can be computed recursively when all the policy parameters are computed
using the following formula:

Ct(It−1) ≜ ft(It−1, Qt, Rt) + E[Ct+Rt(It−1 +Qt − dt,t+Rt)]) (2)

with CT+1(IT ) ≜ 0. For a given (R, s,S) parameters set, this formulation allows to
compute the expected policy cost. However, the number of combinations of param-
eters is exponential, making this approach unusable for the computation of optimal
ones.

2 Heuristic technique

The heuristic introduced in this work aims to compute locally optimal Rt values to
produce a near-optimal (R, s,S) policy. The main idea is to move the assignment of
the decision variable Rt at period t and do not fix all of them at the beginning of the
time horizon. This can be done by transforming the recursive Equation 2 into:

Ĉt(It−1) = min
Rt

ft(It−1, Qt, Rt) + E[Ct+Rt(It−1 +Qt − dt,t+Rt)]) (3)

Solving this recursion could lead to different optimal Rt for different opening inventory
levels It−1.

Our heuristics consists of choosing a locally optimal Rt assuming that an order
is placed in period t and the possibility of placing a negative order. We define these
locally optimal replenishment cycles as Ra

t . Knowing the expected cost of future

periods Ĉj with j > t, it is possible to compute the optimal st and St for that specific
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replenishment cycle Rt using SDP. The best St is the value that minimizes Ĉt(St),
since we place an order to reach the point with the lowest future expected cost.

St = argmin
It−1

Ĉt(It−1) (4)

So, assuming that an order is placed, the best replenishment cycle is the one that has
the lowest cost after the inventory level is topped up to St:

Ra
t ≜ argmin

Rt

Ĉt(St) (5)

The computation of Ĉt requires the expected costs of future periods Ĉj with j > t,
which are dependent on the optimal Rj. We relaxed the cost function by defining
Ca

t as the expected cost of using local optimal Ra
j for all periods j after t. Given

Ca
T+1(IT ) = 0, it is possible to compute the relaxed cost function in a backward way

using the following approximate SDP functional equation:

Ca
t (It−1) ≜ ft(It−1, Qt, R

a
t ) + E[Ca

t+Ra
t
(It−1 +Qt − dt,t+Ra

t
)] (6)

This formula computes a near-optimal replenishment schedule Ra, and the set of
order and order-up-to levels optimal for that given schedule. Due to the relaxation,
Ra can differ from the optimal R; however this event is rare.

The resulting approximate SDP formulation is more complex than the (s, S) one,
making the computational effort required to solve it prohibitive. This is mainly due to
the computation of the expected cycle cost; its computation involves three variables in
each period: current inventory, order size and length of the replenishment cycle. This
computational effort can be considerably reduced applying the K-convexity property.
The deployment of search reduction and memoisation techniques further improve the
performances, and it has a crucial impact on the applicability of this model.

3 Experimental Results

We aim to evaluate the policies computed by the heuristic and the computational
effort required. We assess the computational effort required to compute a policy and
under an increasing time horizon. We used the same testbed presented in [1].

For the experiments, we use as a comparison the branch-and-bound (BnB) tech-
nique presented in [1]. This is the only (R, s, S) solver for this problem configuration
available in the literature. The solvers used are:BnB-Guided the branch-and-bound
approach presented in [1], SDP the basic implementation of the SDP heuristic model,
and SDP-Opt, the heuristic implementation deployed using the K-convexity prop-
erty and the immediate cost memoisation.

Figure 1 shows the logarithm of the average computational time. The simple im-
plementation of the heuristic can barely solve tiny instances before the time limit,
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Figure 1: Computational time of the (R, s, S) SDP over the number of periods.

making it useless for every practical use. The reduction of computational effort pro-
vided by K-convexity and memoisation is massive. The guided BnB slightly outper-
forms the optimised SDP for small instances up to 8 periods, then the gap between
the two strongly increases, making it able to solve instances more than twice as big
in the same amount of time. The memoisation offers a great speed up in the com-
putational times, which is more significant in bigger instances. For bigger instances,
the physical memory needed grows to require the usage of memory swap and a slow
down in performances.

In this testbed, the heuristic always computes the optimal replenishment plan.

4 Conclusions

This paper presented a heuristic for the non-stationary stochastic lot-sizing problem
with ordering, review, holding and penalty cost, a well-known and widely used inven-
tory control problem. Computing (R, s, S) policy parameters is computationally hard
due to the three sets of parameters that must be jointly optimised. We presented the
first pure SDP formulation for such a problem. The algorithm introduced solves to
optimality a relaxation of the original problem, in which review cycles are considered
independently, and items can be returned/discarded at no additional cost.
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Abstract

In our study we consider a finite-horizon periodic review perishable in-
ventory system with non-stationary stochastic demand, zero lead time, FIFO
issuing policy, and a fixed shelf life. We consider a fixed setup cost and
ordering, holding, penalty, and outdating costs per item. We introduce a
computationally-efficient heuristic for this problem which is based on the deter-
ministic equivalent shortest path approach proposed by [1], the Wagner-Whitin
algorithm and the Silver-Meal heuristic, in order to calculate the replenish-
ment cycle and the order quantities for the (Rn, Qn) policy that minimize the
expected total cost throughout the planning horizon. We firstly determine
the replenishment periods and cycles via a deterministic-equivalent approach
which follows a novel procedure based on the Wagner-Whitin and Silver-Meal
heuristics. Using the replenishment cycles determined in the first step, we then
calculate the order quantities via a numerical search method and in an online
fashion. Finally, we conduct numerical experiments for various scenarios and
parameters. We conclude that the computation time is reduced significantly,
and the average optimality gap between the expected total cost and the optimal
cost is 1.87% which is the best result so far in the literature.
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1 Introduction

We study a finite-horizon perishable inventory system with non-stationary stochastic
demand with known parameters, penalty costs, the FIFO issuing policy, and a fixed
shelf life. This simplifies the solution method and in general, it is not a relaxation
with serious consequences. This problem can be solved to optimality by using the
SDP approach, but it is not computationally feasible. Therefore, we employ a static-
dynamic uncertainty strategy [2] and our objective is to find a near-optimal (Rt, Qt)
policy that minimizes the total cost throughout the planning horizon. We propose a
computationally-efficient heuristic based on the Wagner-Whitin algorithm and Silver’s
heuristic [3]. The heuristic works in a recursive way and decides the near-optimal path
up to period t with respect to the inventory level composition of each age at the end
of period t that gives the least average cost per period as long as they satisfy the
expected future demand. In our study, in order to deal with the large state space we
assume the independence of replenishment cycles and hence it will allow us to focus
on each cycle.

2 Problem Formulation

The stochastic model below formulates this problem:

minE {TC} =

∫

dT

...

∫

d1

T∑

t=1

(
q(Qt)

+ h(It,0)
+ + h

M−2∑

b=1

It,b − p(It,1)
− + wIt,M−1

)
f1(d1)...fT (dT )dd1...ddt

subject to

q(Qt) =

{
a+ cQt, if Qt > 0

0, otherwise
t = 1, 2, ..., T. (1)

It =
M−1∑

b=0

It,b =
M−2∑

b=0

It−1,b +Qt − dt, t = 1, 2, ..., T. (2)

It,0 = Qt − (dt −
M−2∑

b=0

It−1,b)
+, t = 1, 2, ..., T. (3)

It,b = (It−1,b−1 − (dt −
M−2∑

j=b

It−1,j)
+)+, t = 1, 2, ..., T ; b = 1, ...,M − 1. (4)

I0,b = 0, b = 0, ...,M − 1. (5)
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It,b ≥ 0, t = 1, 2, ..., T ; b = 1, ...,M − 1. (6)

Qt ≥ 0, dt ≥ 0, t = 1, 2, ..., T. (7)

Note that (x)+ = max(x, 0) and (x)− = min(x, 0).

3 Calculating the Replenishment Cycle Order-Up-

To Levels

We obtain the stochastic component of c(i, j) and apply the multi-period Newsvendor
formulation:

Cij(Sij) =

j∑

t=i

(
(h+p)

∫ Sij−
∑t

k=i IM,k

−∞
Fi,t(di,t)d(i, t)−p

(
(Sij−

t∑

k=i

IM,k−di,t)
))

.

(8)

Then we obtain
j∑

t=i

Fi,t

(
S∗
ij −

t∑

k=i

IM,k

)
=

Np

h+ p
(9)

where the length of the replenishment cycle is denoted by N = j − i+ 1. Since there
is no explicit formula for the exact expected outdating [4], we use the EWA heuristic
proposed by [5].

4 A Heuristic to Determine the Best Path and the

Order Quantities

We denote the last period in which the expected demand is sufficed by the remaining
inventory at the end of the replenishment cycle R(i, t) by Ti,t, and the remaining
inventory cost or the possible future replenishment cost given It at the end of period t
by c′(t+1, Ti,t). In case there is not enough demand, Ti,t represents the last period that
is covered by the next replenishment cycle (i.e. R(t+1, Ti,t)) selected via the modified
Silver-Meal heuristic. Using the deterministic equivalent approach, we calculate each
corresponding cycle costs c(i, t) for all the possible replenishment cycles R(i, t), i =
max(1, t −M + 1), ..., t. Using It, we calculate c′(t + 1, Ti,t). We then calculate the
average cost per period with respect to the formula below and using the total cost at
the end of period i− 1, recursively:

AC(Ti,t) =
TC(i− 1) + c(i, t) + c′(t+ 1, Ti,t)

Ti,t
, i ∈ max(1, t−M + 1), ..., t, (10)
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i∗ = arg min
i

AC(Ti,t). (11)

and calculate the total cost as follows: :

TC(t) = TC(i∗ − 1) + c(i∗, t), (12)

and TC(0) = 0. We repeat this process for period t+1 and continue until the end of
the planning horizon.

Given the observed inventory composition at any period and using the pre-determined
replenishment cycle plan found in Step 1 as an input, we apply the multi-period
newsvendor formulation in order to find the order quantities.

5 Numerical Experiments

We compared our heuristic with the optimal SDP solution for 216 instances in total.
The average optimality gap is 1.87%, no more than 5% at any instance, and the
effect of the lifetime on calculation times are in terms of milliseconds in our heuristic
unlike the SDP solution in which calculation times increase exponentially and quickly
become unmanageable.
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Abstract

Capacitated multi-level lot-sizing problems determine the production quan-
tities to minimize inventory and backlog in a multi-echelon bill of materials.
The models typically require the production plan to respect resource capacity.
The resulting production plan is then forwarded to the scheduling level, where
a scheduler assigns a machine and a start date to each operation. Often, the
scheduler cannot adhere to the plan, because the standard models for multi-
level capacitated lot-sizing approximate the capacity consumption roughly. For
instance, these models do not consider the precedence relations in the bill of
material. This study investigates supervised learning approaches to predict the
capacity consumption of multi-level lot-sizing problems. We fit machine learn-
ing models to predict the capacity consumption of plans for one period based
on lot sizes as input data. To incorporate the fitted model into the MILP, we
translate it into a set of constraints and variables. These additional constraints
replace the classical capacity constraints in the MILP model for the multi-level
lot-sizing. Our experimental results show that this integrated approach results
in plans that are more reliable and cost savings.
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1 Introduction
Production planning determines the optimal quantities of items to produce in each
period of the planning horizon. To guarantee the feasibility of the plans, capacity
constraints limit the quantities to produce on the resources. Standard mathematical
formulations for lot-sizing models consider a simple aggregation of the capacity con-
sumption per resource. This simple constraint is sufficient when there is stationary
bottlenecks in the production stages. However, such a constraint does not account
for detailed scheduling constraints such as precedence relations. As a result, there
is no guarantee that the production plans generated at the upper level respect these
scheduling constraints, and this can lead to infeasible plans. Several studies consider
the mathematical models for the integration of production planning and scheduling
([1], [6]), but these models consider complex formulations that are only relevant for
small-size instances. In addition, these models lack scalability since they are only ap-
plicable in the case of standard scheduling problems, such as job-shop or flow-shop.
In this study, we propose to incorporate a more precise capacity constraint learned
from scheduling examples with machine learning models. More precisely, we propose
a new data-driven formulation for the multi-level lot-sizing problem which integrates
a machine learning model translated into a set of constraints and variables previously
trained to predict the makespan of the scheduling problem. This new approach accu-
rately predicts the capacity consumption for each period, and it results in production
plans that are more often feasible and have lower costs that the plans obtained with
the standard models from the literature.

2 Motivation
In this study, we extend the Multi-Level Capacitated lot sizing problem (MLCLSP)
initially proposed by Billington1983[3]. This MLCLSP aims at determining the op-
timal production lot sizes, taking into account inventory holding costs, fixed setup
costs, and unit production costs while satisfying the customers’ demand. The pro-
duction plan is define for given planning horizon, denoted by T , divided into smaller
time periods. Multi-level lot sizing problems consider a bill of material that describes
the components required to produce each end item. In each period, the production
quantities must respect capacity limit for each resource. This capacity constraints
ensure the feasibility of the plan, and a plan is feasible if it can be translated into a
detailed schedule that can produce all lot within a time period. However, the stan-
dard capacity constraints the MLCLSP simply sums up the processing times required
by each item for each resource, and it ignores the precedence relationship given by
the bill of material (or bill of processes). Therefore, the lot sizes determined by these
models usually exceed the capacity, leading to late demand satisfaction and unreliable
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production plans.
Figure 1 shows an example of a solution returned by the classical mathematical

model for MLCLSP with 3 machines and 3 end items. In this example, the bill of pro-
cess requires three production steps in a serial structure. Subfigure 1a illustrates the
quantities of items determined for one period using the standard capacity constraints
of the MLCLSP. This plan is optimal with respect to the MLCLSP constraints since
it doesn’t consider scheduling level characteristics such as precedence constraints or
resource requirements. However, when scheduling the lot on the machines, the result-
ing production plan shown in Subfigure 1b violates the capacity of the period. Such
infeasible plans are undesirable since they require manual modification of the plan,
which is complex and often lead to costly plans.
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(a) Solution of the MLCLSP
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(b) Solution after scheduling the lots

Figure 1: Example of an infeasible solution of MLCLSP after forwarding lots to the
scheduling problem

3 Integrated Machine learning and Lot-sizing
To provide feasible production plans, we aim to build an accurate estimation of
the capacity consumption, and to integrated the resulting function in the MLCLSP
model. We train machine learning models on datasets that correspond to instances of
scheduling problem and the associated makespan. The model is trained to predict the
makespan. Given relevant input features such as lot sizes or available inventory for
each product, the machine learning model provides an accurate forecast of the value
of the makespan. This makespan corresponds to the capacity consumption of each
period of the production plan since it indicates if all production lots can be produced
in a period. We translate the fitted model into a set of linear equations and variables,
and we add them to the mathematical model for the MLCLSP to replace the stan-
dard capacity constraints ([4],[2]). We investigate the use of both linear regression
and neural networks to predict the makespan.

Machine learning models are usually trained to minimize the mean squared error
between the data sample output and the prediction. However, the resulting model is
prone to underestimate the capacity consumption of the data sample, leading to lot
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sizes for products that can exceed the capacity. To ensure that our models always
overpredict the capacity consumption on the training dataset, we build our machine
learning models to minimize an error that drastically penalizes predicted values that
underestimate the desired output. This loss function is related to a tilted absolute
value function with a sufficiently high quantile [5]. In addition, to efficiently train
our model, we propose a procedure that iteratively solves lot-sizing problems in order
to generate adversarial examples that are underpredicted by our approach. These
examples are used to complete the training dataset, leading to robust machine learning
models and a data-driven lot sizing approach able to find production plans with a
high percentage of feasibility while decreasing the total costs compared to the classical
approach from the literature.
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Abstract

For some NP-hard lotsizing problems, many different solution heuristics ex-
ist, but they have different solution qualities and computation times depending
on the characteristics of the problem instance. The computation times of the
individual solution heuristics increase significantly with the problem size, so
that testing all available solution heuristics for very large problem instances
requires extensive time. Therefore, it is necessary to develop a method that
allows a prediction of the best solution heuristic for the respective problem
instance without testing all available solution heuristics. The Capacitated Lot-
sizing Problem (CLSP) is chosen as the problem to be solved, since it is well
researched and several different solution heuristics exist for it. Five different
forecasting methods are presented. One of them is a two-layer neural net-
work called CLSP-Net. It is trained on small problem instances, which can be
solved very fast with the considered solution heuristics. Nevertheless, CLSP-
Net is able to identify the best solution heuristic even for very large problem
instances.

1 Introduction

In the literature on lotsizing there are a large number of optimization problems which
can be classified as NP-hard and for which many different solution heuristics have
already been developed (see, e.g., [11, 9, 10, 1, 3]).

A promising solution approach for simultaneous lotsizing and scheduling models,
which performs better in terms of solution quality and runtime compared to previ-
ous heuristics, is presented in [15]. Besides decomposing a multi-line problem1 into

1The authors consider the General Lotsizing and Scheduling Problem for Parallel production
Lines (GLSPPL).
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independent single-line problems, the authors aggregate the time grid of the original
model and reduce the number of periods in this way. Then, the aggregated problem is
solved and the resulting production schedule is used to define line-dependent demands
for all products. Since this heuristic leads to long computation times for a large num-
ber of products, [16] applies a product aggregation instead of a time aggregation, in
which products are grouped into so-called setup families. This aggregation reduces
the amount of data, but at the same time problems and errors can occur during the
subsequent transfer of the planning results to the individual products (see [16, chapter
4]).

Therefore, the fundamental question arises, according to which aggregation rules
the initial data should be aggregated and with which procedures the results should
be disaggregated, in order to keep the aggregation error as low as possible on the one
hand and to obtain a solution quality as high as possible on the other hand. The
problem is that there are many different aggregation and disaggregation possibilities,
which depend on the problem under consideration, and therefore it is not clear which
of the rules or procedures should be applied step by step for a specific problem.

For this reason, it would be advantageous if a method exists that determines
or predicts the best combination of aggregation and disaggregation rules depending
on the characteristics of the considered problem. It is to be investigated whether
machine learning can be used to achieve this goal. Since the described use case of
decomposition in combination with aggregation and disaggregation is very complex
and intransparent, it makes sense to first develop and test the desired method using
a simpler problem environment. Then, the knowledge and experience gained can be
used to develop a forecasting approach for the decomposition use case.

A very similar problem occurs when for an NP-hard problem, depending on the
characteristics of a problem instance, different solution heuristics have the best solu-
tion quality. In this case, it is also unobvious which of the available solution heuristics
should be applied to the considered problem instance.

As shown in Figure 1, the computation times of the solution heuristics (1-4) in-
crease strongly with the problem size, which is why a computation of all available
heuristics would require a huge amount of time, especially for larger problem in-
stances. In application areas where an optimization task has to be solved very fast
(e.g. real-time-scheduling), usually not all heuristics can be tested. Moreover, if even
exact solution methods (in Figure 1: Gurobi) are not able to solve larger problem
instances in a given time limit, a prediction of the best solution heuristic for the
considered problem instance would be very helpful. This problem is referred to in the
literature as Algorithm Selection Problem [12], Automated Algorithm Selection [13, 4]
or Adaptive Recommendation Model [2].

The question is how to learn which type of problem instance works best with
which solution heuristic. One approach could be to use a data collection that consists
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Figure 1: Basic idea.

of small problem instances, but still has different problem characteristics. For this
training set, all solution heuristics can be tested quickly due to the short computation
times, so that it is known which problem instance works best with which heuristic
(input-output pairs). If patterns can be derived from the input-output pairs in the
next step, these insights can be used to forecast the best heuristic for a very large
problem instance for which no best solution heuristic is yet known. This approach
is called supervised learning in the field of machine learning [7, p.105 f.]. To be
able to check whether the forecasting method to be developed can also be applied
to very large problem instances, it must be tested using problem instances that are
significantly larger than the small instances of the training set (see Figure 1).

The Capacitated Lotsizing Problem (CLSP) is used as the problem to be solved.
A major advantage of the CLSP is that it has important characteristics of a lot-
sizing problem, but can be classified as low in terms of complexity. Furthermore, the
CLSP is already very well researched, which is why many solution heuristics exist
for solving the CLSP, some of which have very short computation times for small
problem instances.
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2 Summary and Conclusions

Five different prediction methods are presented for selecting the best solution heuris-
tic depending on the characteristics of the considered problem instance for the CLSP.
For training and validation of the forecasting methods, an extensive data collection
(J72T12G24) is created, which considers the lotsizing of fictitious tire manufacturers.
The J72T12G24 data collection considers six different demand scenarios, two scenar-
ios regarding utilization, and three different scenarios regarding the ratio of setup
and holding costs. The data collection includes a total of 7,200 problem instances,
which have very different characteristics due to the combination of scenarios. All
7,200 problem instances are solved using the heuristics of [14], [5], [6] and [8]. The
results show that the solution heuristics have different solution qualities depending
on the characteristics of each problem instance, and none of the heuristics dominates
the rest of the heuristics.

The best recognized approach to select the best solution heuristic depending on
the characteristics of the considered problem instance is based on a two-layer neural
network (CLSP-Net). As input, CLSP-Net is given 17 key performance indicators
(KPIs), which are to be computed beforehand for each problem instance. The use of
KPIs ensures that CLSP-Net can be used for different problem sizes, since the number
of KPIs to be determined is independent of the problem size and therefore no adjust-
ments to the network structure of CLSP-Net are necessary. As an output, CLSP-Net
determines a probability for each of the four heuristics, whereby the heuristic with the
highest value has to be selected. The numerical tests show that the trained CLSP-Net
achieves an accuracy of 78.17 % for the test set of data collection J72T12G24.

The next best alternative forecasting method uses conditional probabilities and
achieves an accuracy of 70.63 %. The remaining three forecasting methods achieve
significantly worse results. While a rule-based approach still achieves an accuracy of
up to 45.13 %, a random selection according to the probability distribution contained
in the data generates an average accuracy of 33.13 % and a random selection according
to a uniform distribution generates an average accuracy of only 25.05 %.

With the data collection J108T18G36, another data collection is created that
contains problem instances 125 % larger than the data collection J72T12G24. It
should be mentioned that all forecasting methods were not trained on the basis of
such large problem instances. The numerical tests show that CLSP-Net achieves
a comparable accuracy of 78.61 % without a new training phase. Moreover, the
computation time for predicting a single problem instance for very large problem
sizes is less than 2 seconds, so computation time can be saved compared to testing
all heuristics regardless of the problem size. On the other hand, it can be seen that
the generation of CLSP-Net (especially the generation of the training, validation and
test data collection) takes a lot of time.
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Abstract

In this paper, we introduce, model and solve the one-warehouse multi-retailer
problem with production constraints (OWMR-PC). In the OWMR-PC, we con-
sider one warehouse that produces one type of item over a discrete and finite
planning horizon. The items are transported to retailers which have to satisfy a
known customer-demand. We explore different types of production constraints:
1) ordering is only permitted at a predefined set of periods, 2) limiting the num-
ber of production periods either through a maximum number of production pe-
riods or through a minimal or maximal number of periods between production.
Those constraints mimic a situation where the length of time periods is differ-
ent between the warehouse and the retailers. The objective consists of finding a
solution which minimizes the operational costs, comprising a fixed production
and order cost and an inventory holding cost, which respects the predefined
set of constraints including the production constraints. We propose different
ways to adapt the state-of-the-art formulations for the OWMR to the OWMR-
PC. We conduct extensive computational experiments to show the limitations
of each formulation and we derive appropriate managerial insights related to
considering production constraints.

1 Introduction
In this work, we introduce, model and solve the one-warehouse multi-retailer with

production constraints (OWMR-PC). The OWMR-PC is defined over a finite plan-
ning horizon of T periods, 1 ≤ t ≤ |T |, and only one type of commodity (item) is
considered. At each time period t ∈ T , a single warehouse can produce items incur-
ring a setup cost (fixed production cost) denoted by f 0

t . A set of retailers C can then
order items from the warehouse. Each retailer c ∈ C must satisfy a known demand
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at each time period t ∈ T denote by dct . A setup cost (fixed ordering cost) denoted
by f c

t is incurred by retailer c ∈ C when it orders from the warehouse at period
t ∈ T . At the end of each period t ∈ T , items can be kept in inventory both at the
warehouse and at the retailers incurring a holding cost of h0t and hct , c ∈ C, per item
at the warehouse and at the retailers, respectively. Production constraints limit the
periods when the warehouse can produce items. Two types of production constraints
are considered: 1) producing only at a predefined set of periods, 2) limitations on the
production periods which can be imposed through a maximum number of production
periods, or through a minimal or a maximal number of periods between production.
The problem consists of determining the number of items to produce at the warehouse
and to order at the retailers at each time period in order to satisfy the demand at the
retailers while respecting the production constraints and minimizing the total costs
(i.e., setup and holding costs).

Production constraints are important from a practical stand-point. In fact, pro-
duction requires additional workload for warehouses. Some days of the week or periods
of the year may be impractical for production due to various events or restrictions. For
example, it can be more complex to produce items over on Saturdays and Sundays,
even though the retailers could pass orders on these days. Similarly, producing after
some holidays (e.g., Chinese new year) might be more complex in terms of workload.
Therefore, consider such constraints is important to understand the impacts both in
terms of methodological developments as well as practical implications.

To the best of our knowledge, we are the first to study the OWMR-PC. This prob-
lem is closely related to the one-warehouse multi-retailer problem (OWMR) which has
been studied in the literature and for which many mathematical models have been
proposed [2, 3]. From a practical point of view, the multi-commodity formulation
(MC) is the most efficient formulation found so far. Note that generally, authors
consider that warehouses order at each time period rather than produce. To remove
the confusion related to the production constraints, which could be seen as ordering
constraints at the warehouse level, in the OWMR-PC, we say that the warehouse pro-
duces rather than orders. The OWMR-PC is also related to the joint replenishment
problem (JRP) [1] which can been seen as a particular case of the OWMR problem
where storage is not permitted at the warehouse.

2 Mathematical model
For conciseness reasons, we do not present a full mathematical model for the

OWMR-PC. In the following, we explain how we adapt the multi-commodity formu-
lation as introduced by [2] to consider the proposed production constraints. Let us
recall that binary variables y0t are equal to one if the warehouse produces item at
period t ∈ T and zero otherwise.
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2.1 Fixed production periods

The first type of production constraints considers that production can only be
done at predefined periods, i.e., production is forbidden at known time periods. We
denote by X ⊆ T the set of forbidden periods. We consider three methods to model
fixed production periods. Method 1 consists of fixing the values of the y-variables by
adding y0t = 0, ∀t ∈ X. Method 2 consists of considering a high production setup
cost at forbidden periods by setting f 0

t = Mt,∀t ∈ X, where Mt is a high value. We
consider two ways to compute Mt: a naive value where Mt = ∞,∀t ∈ X, and a value
which relies on computing upper bounds on the costs, M̃t,∀t ∈ X. Method 3 consists
of imposing additional constraints which model restrictions on the inventory between
consecutive non-forbidden periods, through the echelon-stock concept.

2.2 Limitations on the production periods

The second type of production constraints considers that production can be done
at any time period (no forbidden periods), but limits the production periods. Three
possibilities are modeled. The first one consists of imposing a maximum number of
production periods n which is imposed through

∑

t∈T
y0t ≤ n. (1)

The second one consists of imposing a minimum gap of τ periods between production
periods and can be imposed through

t+τ−1∑

k=t

y0k ≤ 1, ∀ 1 ≤ t ≤ |T | − τ + 1. (2)

The third one consists of imposing a maximum gap of τ periods between production
periods and can be imposed through

t+τ−1∑

k=t

y0k ≥ 1, ∀ 1 ≤ t ≤ |T | − τ + 1. (3)

Note that we also study alternative ways to model Constraints (1), (2) and (3).

3 Computational results
All experiments were conducted on a Linux x86_64 machine equipped with an

Intel Core i7-7700 3.60 GHz processor and 62Go of RAM. The code was implemented
in Python 3.9.14 and CPLEX 22.12 was utilized. During all executions, a time
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|X| y0t
Mt Add constraints

∞ M̃t

16 2.27 4.46 3.97 4.77
18 1.97 4.88 3.88 4.66
19 1.71 5.31 3.43 4.40

Table 1: Solving time in seconds (|T | = 25, |C| = 100 )

|X| Setup costs (%) Holding costs (%) Total costs
Retailers Warehouse Retailers Warehouse

16 30 17 39 14 161,773
18 25 11 39 25 183,693
19 18 7 40 35 213,822

Table 2: Repartition of the total costs (|T | = 25, |C| = 100)

limit of 7,200 seconds was enforced. Our preliminary results reaffirm that the multi-
commodity formulation proposed by [2] is the most efficient. When imposing fixed
production periods, fixing the y-variables proves to be the most efficient way, while
considering a naive value of Mt is the least efficient. Table 1 presents the different
methods’ solving time for representative instances. An analysis on the cost reparti-
tion indicates that when we increase the number of forbidden production periods, the
setup costs (and the number of setups) at the retailers decreases while the holding
costs at the warehouse increase. Table 2 presents for a different number of forbidden
production periods the setup and holding costs (in percentage) at the retailer and
warehouse levels, as well as the total costs. Finally, we show that Constraint (1)
performs generally well and gives similar results concerning the repartition of total
costs.
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Abstract

Semiconductor manufacturing processes are probably the most complex
manufacturing processes in the world. More recently, time constraints (TCs)
have significantly increased the production management complexity [4]. Our
problem is a multi-product, multi-step, multi-machine production planning
problem with TCs, where the work-in-process, inventory and backlog costs
are minimized. This work focuses on the integration of TCs and practical con-
siderations in tactical production planning using the notion of Timed Routes
(TR) and a column generation approach from the literature. In particular,
the notion is extended to Machine Timed Routes (MTR). Three mathematical
models are proposed with time constraints: Fixed lead time, TR and MTR.
The models are compared using industrial instances and used to analyze the
negative impacts of TCs on tactical plans.

1 Context, problem statement and motivations

Semiconductor manufacturing processes are probably the most complex manufactur-
ing processes in the world. They are characterized by long cycle times, a very large
number of operations (more than 1,000 for some product routes) that require hun-
dreds of different machines to process a large volume of wafers constantly circulating
in the manufacturing facility, called fabs. Time constraints (TCs), defined between
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two processing steps (consecutive or not), increase the complexity of managing semi-
conductor fabs. Time constraints might ”cover” more than 20 operations and overlap
or follow each other creating Time Constraint Tunnels (TCTs). In TCs and TCTs,
lots must respect a maximum time between the two processing steps to ensure the
quality of the wafers in the lots.

Time constraints tend to reduce the throughput of the fabs and need to be taken
into account when determining tactical plans. Each product has a route, i.e. needs
to perform a certain sequence of processing steps, and each step has a processing
duration and can be performed by multiple machines. This problem is a multi-
product, multi-step, multi-machine production planning problem. The goal is to
minimize the work-in-process, inventory and backlog costs.

Mathematical programming methods can be used to solve production planning
problems with limited capacity and fixed lead times [5]. As modeling with fixed lead
times has limitations, in particular in correctly using production capacity, workload
dependent lead times using clearing functions and simulations [1] have been proposed
in the literature. Flexible lead times [3] have also been proposed.

This work focuses on the integration of time constraints and practical considera-
tions in tactical production planning using the notion of timed routes and the column
generation approach introduced in [2]. Moreover, industrial instances are used to
validate the proposed approach. Timed routes are product routes with a time period
assigned to each processing step. We extend the column generation approach of [2]
to take industrial constraints, including time constraints, into account.

2 Solution approach

As the duration of critical time constraints is usually smaller than one day, the time
period in the planning horizon considered should be at most one day. Due to the
duration of some long processing steps, shorter periods can hardly be considered as
they might make the modeling of machine capacity more difficult. Also, to better fit
the industrial reality, when considering time constraints, detailed machines should be
taken into account and not only workshops (set of machines) as in [2]. Indeed, as
machines are different even in the same workshop (as machines can only perform a
limited number of operations of products), they need to be considered independently.
Industrially, some of the most complex TCTs to manage are TCTs in which some
processing steps have only one eligible (or qualified) machine. In addition, as a
wafer fab is never empty, the initial Work-In-Process (i.e. products already started
and waiting in front of machines or being processed) should be considered. Three
mathematical models are proposed.

First, we extended the fixed lead time model of [2] which ensures, by definition
of the fixed lead times, that the time constraints are respected. However, the lack of
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flexibility of fixed lead times makes the model not relevant. Considering flexible lead
times makes the model too large and thus too slow to solve with a standard solver.

To face this problem, [2] introduce the concept of timed routes. As already ex-
plained, a Timed Route (TR) is a route in which every processing step is assigned
to a period. We extend this concept to Machine Timed Route (MTR), where the
machine on which to process each step is also specified. Thus two different models
are proposed: (i) A TR model where TR patterns are used to solve a linear program-
ming model, and the quantity to process on each TR and the machines assigned to
each step of the TR are optimized and (ii) A MTR model where MTR patterns are
used to solve a linear programming model where ”only” the quantity to be processed
on each MTR is optimized. These models have been improved to also consider the
initial inventories.

To solve these two models, the column generation approach of [2] is extended. An
initial set of TR and MTR is generated using historical data, and new TR and MTR
are generated by solving the pricing problem and using similar dominance properties
as in [2]. In addition, time constraints are implemented as constraints to be respected
when generating new timed routes and machine time routes. By extension, if a route
respects all its TCs, then its TCTs are respected. However, this extension can be too
hard for critical TCTs. For example, for a TCT that include TCs shorter than one
period (i.e. with duration shorter than one period), the steps of each TC have to be
performed in the same period. This means, by extension, that all the steps of the
TCT have to be performed in the same period. This can be too constraining as a lot
might actually enter a TC at the end of the tunnel only at the end of the period, or
even in the next period. This is why a coefficient T relax has been introduced to allow
some TCs to be performed on multiple periods.

3 Numerical results

The three mathematical models have been compared using industrial instances. The
numerical results obtained so far on three industrial instances will be presented in the
workshop. They show that the MTR model outperforms the fixed lead time model
and the TR model in terms of computational times, but also of solution quality
(see Table 3). In terms of computational times, dual resolution seems to generally
perform better than primal resolution. However, in the column generation approach,
the primal resolution seems to outperform the dual resolution when the MTR model
is used, as it manages to solve the problem at one iteration by starting from the
solution obtained in the previous iteration and adding the new columns.

As expected, time constraints have a negative impact on the quality of the opti-
mized production plans as they reduce the capacity to fulfill the demand. For some
instances, large impacts could be observed on the satisfaction of the demand of some
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FLT Dual TR Dual MTR Primal

CPU time 18h >48h 48h
Nb iterations 1 145 2 124
Gap to optimal MTR objective 868% 8% 0%
Not satisfied demand 6% 1.7% 1.7%
Nb created routes - 4 351 39 106

Table 1: Comparison between solutions obtained with FLT model and column gen-
eration approached for TR and MTR models.

product with shorter (i.e. more constraining) TCs than the other products. On other
instances, a limited impact on the demand is observed as the due dates seem to be
already short. However, different production plans are proposed that satisfy the TCs
when solving the TR and MTR models.

4 Conclusions and perspectives

The timed route model and the column generation approach proposed in [2] have been
extended at the machine level considering periods of one day and to consider addi-
tional industrial constraints, including time constraints. Computational experiments
on industrial instances show that the MTR model performs very well.

This work has multiple perspectives. The initialization of the TR model and
the MTR model could be improved by proposing a better set of initial time routes.
In addition, considering periods of different lengths should be relevant to optimize
production plans on longer horizons. This is particularly relevant in semiconductor
manufacturing where products have very long cycle times.
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HEC Montréal and CIRRELT, Canada H3T 2A7 QC, Canada
chi.xu@hec.ca

Raf Jans
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Abstract

This study addresses the integration of the lot-sizing and storage assignment
problems. Traditional lot-sizing problems have been extensively studied, but
research has only recently paid attention to the assignment of items to inventory
locations. In our problem, the storage space is divided into separate locations,
and inventory is assigned based on specific conditions. Relocation of inven-
tory is possible if needed. Apart from traditional cost elements, we consider
additional inventory-related costs like fixed storage cost, handling cost, and
relocation cost. We propose a general mathematical model and a transporta-
tion reformulation. To solve the integrated problem, we design heuristics that
split it into smaller subproblems and solve them sequentially. Computational
experiments evaluate the behavior of the integration and different solution ap-
proaches. We also analyze the impact of key input parameters on the solution.
By studying the interaction between lot-sizing and storage assignment, we aim
to better approach the complexities of real-world scenarios.
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1 Introduction

Considering the dynamic lot-sizing problem as one of the most studied production
planning problems, we study the complex case that arises when multiple capacitated
storage locations are available. In lot-sizing literature, limitations arise with respect
to the production capacity, as well as the storage capacity, since inventory cannot
accumulate infinitely. One of the most obvious limitations is the space used to store
the inventory. Some of the studies on lot-sizing problems have addressed storage
capacity, although still allowing an unlimited production capacity ([7, 2, 6]), while
others consider both production and storage capacities ([1, 4, 9]).

An example of the multiple capacitated storage locations is in the storage of
liquid products into tanks, where the typical approach of considering a single global
shared storage capacity is no longer valid since the empty space in a tank cannot be
used to contain a second type of product because different liquids cannot be mixed.
When different types of products need to be stored in multiple locations, we also
take into account whether products can be stored together or not. In some cases
certain products cannot be stored together due to incompatibilities. Examples of
these types of restrictions are commonly seen in the chemical industry ([4]), where
special incompatibility restrictions have to be strictly obeyed. Similarly, we have to
consider the compatibility between a specific product and a location. Some items
may be stored in multiple locations, whereas others require a specific location.

The presence of multiple locations leads to the consideration of different costs, in
addition to the traditional holding cost. We separately incorporate the cost of the
activities related to the assignment of items to specific capacitated storage locations:
the fixed storage location costs ([8, 3, 9]), which is related to the use of a specific
location to hold inventory in a specific period; the variable handling costs that specif-
ically reflects the effort to move a unit from the production line to the assigned storage
location; and the relocation costs that is the manpower and energy required by the
movements needed to relocate the items from one storage location to another.

2 Mathematical Model and Solution Approaches

In this study, we propose an integrated capacitated multi-item lot-sizing and storage
assignment problem with multiple capacitated storage locations. We consider a cost
structure that incorporates the new cost elements (fixed storage costs, handling costs
and relocation costs), along with the traditional costs from the lot-sizing problems
(setup costs, production costs and inventory costs), aiming to balance the multiple
trade-offs among the different costs. The problem takes into account a finite planning
horizon with dynamic deterministic demand. In the production environment, in a
given period, multiple items can be produced using the same resource. Furthermore,
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multiple capacitated storage locations are available to store items, and the storage
capacity, variable and fixed storage costs are location-dependent. In this way, the
produced items can be either directly shipped to the clients to satisfy demand or
stored in the storage locations. On the other hand, the demands can be fulfilled with
items coming either directly from the production line in the same period or from the
inventory accumulated over previous periods. From period to period, the inventory
of items can be moved from one location to another in order to maintain feasibility by
respecting compatibility issues or with the purpose of economizing space and avoiding
unnecessary costs.

As a result of the different characteristics of items and storage locations, it is
necessary to track the specific assignment of the inventory of each item in each storage
location. For this, we propose a mathematical formulation for the problem and we
reformulate it as a transportation problem, in order to obtain better lower bounds
([5]). Therefore, an economic production and storage plan should be designed taking
into account the production and holding costs, the newly introduced fixed and variable
cost, compatibility requirements of the multiple storage locations, and production and
storage restrictions, while fulfilling the demand of each item over a series of discrete
time periods.

To solve the integrated lot-sizing and storage assignment problem, we design sev-
eral heuristics that are based on the idea of splitting the integrated problem into
smaller subproblems, which are then solved sequentially. Several decompositions are
proposed. A lower bound is also obtained from one of the heuristics. We perform an
extensive computational study to assess the impact of the integration between the de-
cisions, as well as the behavior of the different solution approaches. We also perform
a sensitivity analysis in order to better understand the trade-offs of some key input
parameters on the solution and provide meaningful managerial insights to obtain a
more efficient production planning and assignment of items into storage locations.

The results demonstrate that the proposed heuristics are highly effective in finding
feasible solutions that are very close to the best solutions, with an average gap of
0.81%. On average, they achieve this with 97% less computational time compared
to solving the full mathematical model, even for large instances of the problem. In
comparison with benchmark heuristics, some versions of the heuristics are able to
find better solutions in a considerable shorter computational time, highlighting the
benefit of using more specific heuristics. The results from the sensitivity analysis
highlights the influence of compatibility levels on the problem complexity. Limited
item-item compatibility adds considerably to the complexity, whereas limited item-
location compatibility tights the constraints reducing computational time.
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proach for production lot sizing and raw material purchasing. European Journal
of Operational Research, 269(3):923 – 938, 2018.

[5] J. Krarup and O. Bilde. Plant location, set covering and economic lot size: An
0 (mn) - algorithm for structured problems. In L. Collatz, G. Meinardus, and
W. Wetterling, editors, Numerische Methoden bei Optimierungsaufgaben Band 3,
volume 36 of International Series of Numerical Mathematics, pages 155 – 180.
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Abstract

In this talk, we discuss the robust multi-stage lot-sizing problem, when
the returned or collected products (cores) are classified into multiple quality
classes (RML-MQ). For example, end-of-lease or returned laptops from different
sources and channels could be remanufactured to a certain acceptable quality
level and configuration for sale, although the amount of effort for bringing any
two random laptops to a like-new state could be quite different. In our problem,
we consider N time periods, a single type of product, and random demand, and
backlogging is also allowed. We discuss various robust optimization models and
approaches for the problem, including decomposition and dualization, as well
as various challenges in handling adjustable variables. We conclude with some
preliminary results and future perspectives.

1 Introduction

In this paper, we study the robust multi-stage lot-sizing problem, when the returned
or collected products (cores) are classified into multiple quality classes (RML-MQ).
A typical example with such setting would be the IBM’s remanufacturing facility in
Raleigh N.C., where the firm receives end-of-lease or returned laptops from different
sources and channels ([3]). Each returned laptop could be remanufactured to a certain
acceptable quality level and configuration before being put in the market for sale
again. In a given inventory of returned laptops, the amount of effort required for
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bringing any two laptops to a like-new state could be quite different. While one
laptop may just require a thorough cleaning and formatting the hard drive, another
laptop may require a few new parts, e.g., a worn out screen panel to be replaced with
a new one, or a new memory card to be installed to replace a faulty one. This directly
effects the time and cost of remanufacturing, creating an important issue that has to
be considered in the production planning.
We consider a finite horizon of N time periods with a single type of product. In
each period, the manufacturer receives a random amount of returned products, which
then are graded and grouped into Q different quality classes. We assume that the
returned products are sorted before any decision is made, and that the cost of sorting
activities to be a sunk cost, as they do not directly impact the problem structure. The
manufacturer has the option to remanufacture the available cores to fulfill the demand
or keep them in stock to be remanufactured in a future period, and backlogging of
demand is also allowed, as commonly observed in the literature (e.g., [1, 4, 5]). The
unit manufacturing cost is higher than the remanufacturing cost of any type of core
(not only for remanufacturing to be a reasonable option but also in line with practical
examples), and graded cores can be disposed at a certain cost.
The problem is to find the optimal values for production of new products, and the
amounts of different quality cores to remanufacture or salvage in each time period, to
minimize the total costs of production, inventory/backlogging, and disposal. We also
assume that the customers are indifferent between manufactured and remanufactured
products.

2 Deterministic Model

Let xmt be the amount of items manufactured, xqt be the amount of items of quality
class q remanufactured, and sqt be the amount of items of quality class q salvaged, in
period t. Also let yt be binary variables to indicate whether a joint setup has taken
place or not. Then, a deterministic MIP model can be presented, in a similar fashion
to [2], as follows.

min
N∑

t=1

(ftyt + c0x
m
t +

Q∑

q=1

(cqx
q
t + cQ+1s

q
t ) + Ist +

Q∑

q=1

Iqt ) (1)

s.t. Ist ≥ hs
t∑

i=1

(xmi +

Q∑

q=1

xqi − di), t ∈ N (2)

Ist ≥ −b
t∑

i=1

(xmi +

Q∑

q=1

xqi − di), t ∈ N (3)
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Iqt ≥ hq
t∑

i=1

(rqi − xqi − sqi ), q ∈ Q, t ∈ N (4)

t∑

i=1

(rqi − sqi − xqi ) ≥ 0 q ∈ Q, t ∈ N (5)

xmt +

Q∑

q=1

xqt ≤Mtyt, t ∈ N (6)

yt ∈ {0, 1}, t ∈ N (7)

xmt , x
q
t , s

q
t ≥ 0, t ∈ N. (8)

The objective is to minimize the total cost incurred due to setup, manufacturing,
remanufacturing, disposal, inventory, and shortage costs.

3 Uncertainty

Firstly, we introduce the following notation:

dt := (d1, ..., dt) and rq,t := (rq1, ..., r
q
t )

This notation allows us to define variables xmt (d
t−1), xqt (r

q,t−1), and sqt (r
q,t−1) as

functions of the past data dt and rq,t, and hence, an adjustable multi-stage robust
model. In the talk, we will discuss several affine decision rules, and some preliminary
computational results.
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Abstract

The remanufacturing process consists in recovering returned products by
replacing or repairing components. In this work, we consider an uncapacitated
lot-sizing problem with remanufacturing and two types of markets. The de-
mand of new products is only satisfied by manufactured products, whereas the
demand of second-hand products is only satisfied by the remanufacturing of
returned products. We develop polynomial dynamic programming algorithms
for two cases, where the returned products can be disposed or not.

1 Introduction

The remanufacturing is the process of recovering returned products (returns) by re-
placing or repairing components with a bad quality. The research on production with
remanufacturing has been growing over the decades, especially on lot-sizing prob-
lems [9].

The lot-sizing problem with remanufacturing was first studied in [5]. The authors
propose a polynomial algorithm when the costs are linear and prove that the problem
is NP-complete for general concave costs. Polynomial time dynamic programming
algorithms has been developed to solve special cases of the problem [1, 6, 10], where
other papers focused on formulations of the problem [3, 8]. Recently, Piñeyro and
Veira [7] introduce heterogeneous quality for the returns. They provide complex-
ity results, algorithms to solve different cases of the problem and an experimental
analysis to evaluate the relevance of using the returns. No paper in the literature
distinguishes the demand of new and second-hand items in the lot-sizing problem
with remanufacturing.
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In the lot-sizing litterature, remanufactured products are considered as equivalent
to new products, and can satisfy a part of the demand. However, it is not practical to
consider them as new products since the market price, the clients and the marketing
strategy are different [2, 4]. This motivates us to study the lot-sizing problem with
remanufacturing and two sale markets, one for new products and another one for
remanufactured products.

2 Problem definition

The planning horizon includes T discrete periods. The demand of new and second-
hand products are denoted by Dn

t and Ds
t respectively. At the beginning of period t,

Rt returns arrive and are available for remanufacturing.
Producing a new product (resp. a second-hand product) induces a cost of pnt

(resp. pst) in period t. Carrying a new product from period t to t + 1 induces a unit
holding cost of hnt (hst for second-hand products and hrt for returns). At the end of a
period t, returns which are not used to produce second-hand products can either be
disposed or be placed in the inventory until the next period. The unit cost to dispose
the returns is denoted by prt .

We assume that the fixed setup cost ft in period t is joint by the new and the
second-hand products. Note that if the setup costs are not joint, the problem will
consist in solving two independent uncapacitated lot-sizing problems.

Moreover, we assume that Dn
t > 0, Ds

t > 0, hrt < hst < hnt .
The variables xnt and xst denote the quantity of new and second-hand items pro-

duced in period t. The disposal quantity in period t is given by xrt . The inventory level
of new products, second hand products and returns at the end of period t are noted
snt , s

s
t , s

r
t . The binary variable yt indicates if a production of new or second-hand

products occurs in period t.
The formulation of the uncapacitated lot-sizing problem with remanufacturing

and two sale markets is as follows:

Minimize z =
∑T

t=1(ftyt + pstx
s
t + pnt x

n
t + prtx

r
t + hsts

s
t + hnt s

n
t + hrts

r
t )

s.t.
srt = srt−1 +Rt − xrt − xst ∀t ∈ {1, · · · , T}
sst = sst−1 + xst −Ds

t ∀t ∈ {1, · · · , T}
snt = snt−1 + xnt −Dn

t ∀t ∈ {1, · · · , T}
xst + xnt ≤ Myt ∀t ∈ {1, · · · , T}

xrt , x
s
t , x

n
t , ∈ R+ ∀j ∈ {1, · · · , T}

srt , s
s
t , s

n
t , ∈ R+ ∀j ∈ {1, · · · , T}
yt ∈ {0, 1} ∀t ∈ {1, · · · , T}
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3 Remanufacturing with joint setups and no dis-

posal (ULSR-2m-nd)

In this section, we assume that the returns cannot be disposed. We propose an O(T 2)
dynamic programming algorithm to solve this problem.

The ZIO property can be generalized to our problem as follows.

Proposition 1 At each period t, (xst + xnt )(s
s
t−1 + snt−1) = 0.

A subplan Su,v is such that the stock is null only in periods u−1 and v−1 and for
each period t such that u ≤ t ≤ v− 2, we must have sst + snt > 0. Using the definition
of a subplan and Proposition 1, the following proposition holds.

Proposition 2 In a subplan Su,v, the period u is the unique production period for
both new and second-hand products, i.e. xsu + xnu > 0.

From Propositions 1 and 2, we develop a polynomial time dynamic algorithm by
showing that an optimal solution can be decomposed into a succession of independent
subplans.

4 Remanufacturing with joint setups and disposal

(ULSR-2m-d)

In this section, the returns can be disposed if they are not used to satisfy the second-
hand demand. An O(T 6) dynamic programming algorithm is developed to solve this
problem.

t1 t t3

Rt1 Rt2 Rt Rt3

t2 t4

Ds
t2 Ds

t Ds
t3

Ds
t4

Figure 1: Structure of a separation-block

The idea of the algorithm is to decompose an optimal solution into independent
block B(t1, t2, t3, t4) (see Figure 1) where t1 is the unique period before t3 with a
positive disposal quantity, t2 ≥ t1 is the first period with a positive production (xst2 +
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xnt2 > 0), and t3 ≥ t2 is the last period of the block with a positive production quantity.
We proved that the cost of an optimal solution for the block B(t1, t2, t3, t4) can be
calculated in O(T 2). As the number of blocks are in O(T 4), the resulting dynamic
program is in O(T 6).
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Abstract

In practice, an imperfect production process may result in a proportion
of defective products that cannot be used to meet demand. The possibility
of reworking defective products seems economically and environmentally rea-
sonable. Typically, there is no ex-ante knowledge of the exact proportion of
defective products. Therefore, we propose a nonlinear model formulation for
integrated stochastic lot sizing and rework planning with random proportion
of defective products. A sample average approach is used to approximate the
nonlinear model. We apply a multistage stochastic programming approach
that allows adjustments of future production and rework quantities to respond
to specific realizations of the random proportion of defective products. First
numerical results are presented that show the performance of the proposed
approach.

1 Introduction
Production processes are often imperfect, and the result contains both defect-free and
defective products. The latter cannot be used to satisfy demand; see [3]. Neglecting
this aspect can lead to unsatisfied demand for defect-free products. Therefore, it
is necessary to consider an imperfect production process in production planning. It
is often possible to rework defective products. These products can then be used to
meet demand. Typically, reworking defective products consumes less capacity and
costs less than producing new products. In addition, waste is reduced; see [2]. Thus,
reworking defective products seems economically and environmentally reasonable.
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There is often no ex ante knowledge of the exact proportion of defective items within
a production lot. An underestimation or overestimation has a direct impact on the
planned lot sizes. An underestimation, for example, may lead to backlogs. Therefore,
the randomness of the proportion of defective products must be explicitly considered.

2 Problem description
Figure 1 illustrates the considered planning situation.

Common resource

Production

Rework

Inventory of
defective
items
IP r

kt

Inventory of
defect-free

items
IPkt

qrkt

qkt
Qg

kt

Qb
kt
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Figure 1. Integrated production and rework planning (cf. Inderfurth et al. (2005) and
Goerler and Voß (2016))

• The imperfect production process is subject to a stochastic outcome of defective

products. The random variable Ωkt describes the proportion of defective items

of product k in period t. The production quantity qkt must be divided into

defect-free Qg
kt and defective products Qb

kt.

• The rework process is perfect, i.e, all defective products can be transformed into145

defect-free products.

• The product- and period-specific demand dkt must be met according to a δ-

service level.

• The period-specific capacity ct of the common resource is limited and can be

extended by using overtime ot at overtime costs oc. The maximum amount of150

overtime is limited to a fraction α of the period-specific capacity ct.

• The production of one unit of product k entails variable production costs pck and

requires production time ptk. Similarly, reworking one unit of defective product k

induces variable rework costs pcrk and requires rework time ptrk.

• Both, the production and rework of product k require separate setup operations155

that induce different setup costs sck and scrk as well as setup times stk and strk.

The setup operations are modeled by binary variables γkt and γrkt.

• Defect-free and defective products can be held in stock at inventory holding costs

hck and hcrk.

The planning situation is characterized by uncertainty related to the proportion of160

7

Figure 1: Integrated production and rework planning (cf. [4] and [2])

An imperfect production process produces a random proportion of defective prod-
ucts. Thus, the production quantity qkt must be divided into defect-free Qg

kt and
defective products Qb

kt. Production and rework are carried out by the same resource.
The capacity of the resource can be increased by using overtime. However, the use
of overtime is limited. Production and rework require separate setup operations that
cause specific setup costs and times. In addition, production and rework of one unit
entails variable costs and times. Both defect-free and defective products can be held
in stock IPkt and IP r

kt. All defective products can be transformed into defect-free
products, i.e., the rework process is perfect and the rework quantity qrkt can be used
to satisfy the demand dkt. The demand must be satisfied according to a δ-service
level. The resulting nonlinear generic model is approximated using a sample average
approach.

3 Flexible planning approach
To deal with the randomness of the proportion of defective products, we propose
a multistage stochastic programming approach following the static-dynamic uncer-
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tainty strategy of [1]. In the first stage, setup decisions are determined. The first
stage decisions are fixed for the entire planning horizon. In the following stages,
period-specific adjustments of production and rework quantities are allowed. Each of
the following stages corresponds to a single period t. In each period, production takes
place first, followed by a rework process. If the production quantities are realized,
the proportion of defective products becomes known. Based on this new informa-
tion, the quantities of the following rework process can be adjusted. Simultaneously,
production and rework quantities can be adjusted for all future periods.

4 First numerical results
We analyzed the performance of the proposed approach in a simulation-based analysis.
We generated different realizations of the random proportion of defective products.
For each realization, we applied the flexible planning approach. Based on fixed setup
decisions, production and rework quantities of future periods can be adjusted after
the proportion of defective items is known. We compared the results of the flexible
approach with the results of a robust planning approach. In the robust planning
approach, no adjustments to production and rework quantities are allowed. The
simulation-based analysis shows that the flexible planning approach outperforms the
robust planning approach.
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