
A State Space Augmentation Algorithm for

the Replenishment Cycle Inventory Policy

Roberto Rossi a,∗ S. Armagan Tarim b Brahim Hnich c

Steven Prestwich d

aLogistics, Decision and Information Sciences, Wageningen UR, the Netherlands

bDepartment of Management, Hacettepe University, Turkey 1

cFaculty of Computer Science, Izmir University of Economics, Izmir, Turkey 1

dCork Constraint Computation Centre, University College, Cork, Ireland

Abstract

In this work we propose an efficient Dynamic Programming approach for comput-
ing Replenishment Cycle policy parameters under non-stationary stochastic demand
and service level constraints. The Replenishment Cycle policy is a popular inventory
control policy typically employed for dampening planning instability. The approach
proposed in this work achieves a significant computational efficiency and it can solve
any relevant size instance in trivial time. Our method exploits the well known con-
cept of State Space Relaxation. A filtering procedure and an augmenting procedure
for the state space graph are proposed. Starting from a relaxed state space graph
our method tries to remove provably suboptimal arcs and states (filtering) and then
it tries to efficiently build up (augmenting) a reduced state space graph representing
the original problem. Our experimental results show that the filtering procedure and
the augmenting procedure often generate a small filtered state space graph, which
can be easily processed using Dynamic Programming in order to produce a solution
for the original problem.

Key words: Inventory Control; Non-stationary Stochastic Demand;
Replenishment Cycle Policy; Dynamic Programming; State Space Relaxation;
State Space Filtering; State Space Augmentation

∗ Corresponding author. LDI, Wageningen UR, Hollandseweg 1, 6706 KN, Wa-
geningen, The Netherlands. Tel. +31 (0) 317 482321, Fax. +31 (0)317 485646.

Email addresses: roberto.rossi@wur.nl (Roberto Rossi), armtar@yahoo.com
(S. Armagan Tarim), brahim.hnich@ieu.edu.tr (Brahim Hnich),
s.prestwich@4c.ucc.ie (Steven Prestwich).
1 Acknowledgments: B. Hnich and A. Tarim are supported by the Scientific and

Preprint submitted to the IJPE 15 March 2010



Technological Research Council of Turkey under Grant No. SOBAG-108K027. A.
Tarim is supported by Hacettepe University-BAB.

2



1 Introduction

Inventory theory provides methods for managing and controlling inventories
under different constraints and environments. An interesting class of produc-
tion/inventory control problems is the one that considers the single-location,
single-product case under non-stationary stochastic demand and service level
constraints. Such a problem has been widely studied because of its key role in
practice.

Different inventory control policies can be adopted for the above mentioned
problem. For a discussion of inventory control policies see [18]. One of the
possible policies that can be adopted is the replenishment cycle policy, (R, S).
A detailed discussion on the characteristics of (R,S) can be found in [7]. In
this policy an order is placed every R periods to raise the inventory level
to the order-up-to-level S. This provides an effective means of dampening
planning instability (deviations in planned orders, also known as nervousness

[8,11]) and coping with demand uncertainty. As pointed out by Silver et al.
([18], pp. 236–237), (R,S) is particularly appealing when items are ordered
from the same supplier or require resource sharing. In these cases all items
in a coordinated group can be given the same replenishment period. Periodic
review also allows a reasonable prediction of the level of the workload on the
staff involved, and is particularly suitable for advanced planning environments
and risk management [19].

Under the non-stationary demand assumption the replenishment cycle policy
takes the form (Rn, Sn) where Rn denotes the length of the nth replenishment
cycle and Sn the respective order-up-to-level. In this policy, the actual order
quantity for replenishment cycle n is determined after the demand in previous
periods has been observed. The order quantity is computed as the amount
of stock required to raise the closing inventory level of replenishment cycle
n − 1 up to level Sn. In order to provide a solution for our problem under
the (Rn, Sn) policy we must populate both the sets {Rn|n = 1, . . . , M} and
{Sn|n = {1, . . . , M}, where M denotes the number of replenishment cycles
scheduled over a finite planning horizon of N periods.

The problem of populating these sets has been solved to optimality only re-
cently, due to the complexity involved in the modeling of uncertainty and of the
policy-of-response. As Silver points out, computing replenishment cycle policy
parameters under non-stationary stochastic demand is a computationally hard
task [17]. Early works in this area adopted heuristic strategies such as those
proposed by Silver [17], Askin [1] and Bookbinder & Tan [5]. Under some
mild assumptions, the first complete solution method for this problem was
introduced by Tarim & Kingsman [22], who proposed a deterministic equiv-
alent Mixed Integer Programming (MIP) formulation for computing (Rn, Sn)

1



policy parameters. Tempelmeier extended Tarim & Kingsman’s MIP formu-
lation in order to consider different service level measures [25], such as the
“fill rate”. Nevertheless, empirical results showed that Tarim & Kingsman’s
model is unable to solve large instances. Tarim & Smith [24] therefore intro-
duced a more compact and efficient Constraint Programming formulation of
the same problem that showed a significant computational improvement over
the MIP formulation. The Constraint Programming formulation has been fur-
ther enhanced by means of dedicated cost-based filtering algorithms developed
by Tarim et al. in [21]. A Stochastic Constraint Programming [23] approach
for computing optimal (Rn, Sn) policy parameters is proposed in [15]. In this
work the authors drop the mild assumptions originally introduced by Tarim &
Kingsman and compute optimal (Rn, Sn) policy parameters. Of course, there
is a price to pay for dropping Tarim & Kingsman’s assumptions, in fact this
latter approach is less efficient than the one in [24]. Finally, Pujawan and
Silver recently proposed a novel and effective heuristic approach [13].

In this paper, we build on Tarim & Kingsman’s modeling assumptions and
we develop a state-of-the-art algorithm for computing optimal (Rn,Sn) pol-
icy parameters. Two existing techniques — Dynamic Programming and State
Space Relaxation — are combined in order to obtain an effective approach for
computing (Rn,Sn) policy parameters. Dynamic Programming (DP) is an op-
timization procedure that solves optimization problems by decomposing them
into a nested family of subproblems. DP is based on the principle of opti-

mality [2,9] and it has been applied to solve a wide variety of combinatorial
optimization problems, as well as optimal control problems. State Space Re-
laxation (SSR) considers the DP formulation of a combinatorial optimization
problem, and modifies this formulation to obtain a different — and possibly
more compact — DP formulation whose optimal solution is a lower bound for
the original problem. Proposed by Christofides et al. in [6], SSR has been suc-
cessfully applied to constrained variants of routing problems (see e.g. [12,10]).
Roughly speaking, SSR maps the original State Space Graph to a new state
space graph having a smaller number of vertices, and whose shortest path
represents a lower bound for the cost of the shortest path in the original State
Space Graph.

In this work, we enhance these known approaches with a novel strategy: we
introduce a filtering procedure for the State Space Graph and an augmenting
procedure that is able to build a reduced State Space Graph for the original
problem starting from a filtered state space graph for the relaxed problem. The
concept of State Space Augmentation [4] is known in the Operations Research
literature. A dual approach to State Space Augmentation also exists and is
known as Decremental SSR [14]. Nevertheless, the idea of filtering a relaxed
state space graph is, to the best of our knowledge, a novel contribution. Our
experimental results prove the effectiveness of such an approach for computing
optimal (Rn,Sn) policy parameters.

2



The paper is structured as follows. In Section 2 we introduce the problem
definition and the modeling assumptions adopted in this work. In Section 3
we describe a DP reformulation for Tarim and Kingsman’s model. An SSR
for this reformulation is presented in Section 4. A procedure for filtering the
relaxed State Space Graph is presented in Section 5. An augmenting proce-
dure for the relaxed State Space Graph is described in Section 6. An example
that demonstrates the algorithm proposed is given in Section 7. Our compu-
tational experience and a comparison with the state-of-the-art approaches for
computing Replenishment Cycle policy parameters are discussed in Section 8.
In Section 9 we draw conclusions.

2 Problem definition and modeling assumptions

The single-location, single-product production/inventory control problem un-
der non-stationary stochastic demand and service level constraints is formu-
lated in this paper by using the following inputs and assumptions.

We consider a planning horizon of N periods and a demand dt for each period
t ∈ {1, . . . , N}, which is a non-negative random variable with known prob-
ability density function and expected value d̃t. We assume that the demand
occurs instantaneously at the beginning of each time period. The demand is
non-stationary, that is it can vary from period to period, demands in different
periods are assumed to be independent. Demands occurring when the system
is out of stock are assumed to be back-ordered and satisfied as soon as the
next replenishment order arrives. The sell-back of excess stock is not allowed,
if the actual stock exceeds the order-up-to-level for a given review, this excess
stock is carried forward and it is not returned to the supply source. However,
as in [5,22,24,25] such occurrences are regarded as rare events and accordingly
the cost of carrying this excess stock and its effect on the service levels of
subsequent periods are ignored.

A fixed delivery cost a is incurred for each order. A linear holding cost h
is incurred for each unit of product carried in stock from one period to the
next. Our aim is to find a replenishment plan that minimizes the expected
total cost, which is composed of ordering costs and holding costs, over the N -
period planning horizon, satisfying the service level constraints. As a service
level constraint we require that, with a probability of at least a given value α,
at the end of each period the net inventory will be non-negative. As pointed
out in [25], since period demands are random, the net inventory may become
negative. However, the number of stock-outs is restricted by the service level
constraints enforced. While computing holding costs, we will assume, as in
[5,22,24,25], that the service level is set large enough to ensure that the net
inventory will be a good approximation of the inventory on hand.

3



3 A DP Formulation for the Deterministic Equivalent Problem

We hereby introduce a deterministic equivalent DP formulation for computing
optimal (Rn,Sn) policy parameters.

Definition: A replenishment cycle, T (i, j), is the time span between two con-
secutive orders/productions occurring in periods i and j + 1, j ≥ i.

Definition: The cycle buffer stock, b(i, j), denotes the minimum expected
buffer stock level required to satisfy the required non-stock-out probability
during T (i, j).

We define b(i, j), i = 1, . . . , N , j = i, . . . , N , as

b(i, j) = G−1
di+di+1+...+dj

(α)−
j

∑

k=i

d̃k, (1)

where Gdi+di+1+...+dj
is the cumulative probability distribution function of di +

di+1+. . .+dj. It is assumed that G is strictly increasing, hence G−1 is uniquely
defined. It should be noted that it is possible to consider different service level
measures — for instance the “fill rate” — simply by introducing a different
definition for the cycle buffer stock (see also [25]).

Since N is the number of periods in our planning horizon, this will also be
the number of steps in the system. A state sk at step k represents a possible
expected closing-inventory-level, Ĩk, at the end of period k. The decision xk

to be taken at step k is to place an order in such a period or not; if an order
is placed, xk also indicates how many subsequent periods this order should
cover.

Let Xk(sk−1) denote the set of possible feasible decisions xk at period k, when
the expected closing inventory level at period k − 1 is sk−1. This set may
comprise: the decision of not placing an order (xk = 0), the decision of covering
1 period with the order placed (xk = k), the decision of covering 2 periods
with the order placed (xk = k +1), . . ., and the decision of covering N −k +1
periods with the order placed (xk = N). In other words, if xk = 0, no order is
placed in period k; if k ≤ xk ≤ N , xk schedules a replenishment cycle T (k, xk).
However, one should note that the decision xk = 0 is only allowed if

b(v, k) ≤ sk−1 − d̃k,

where v = max{t|1 ≤ t ≤ k, xt > 0}. Intuitively, we can decide not to place
an order at the beginning of period k if and only if we have sufficient stocks
to guarantee the required service level at least for this period.

4



Given a pair 〈sk,xk〉 the cost function pk(sk, xk) is clearly given by the sum of
the fixed ordering cost a, which is charged if xk states that an order should
be placed, and of the inventory holding cost at the end of the period, which
is equal to the expected closing-inventory-level sk, multiplied by the per-unit
holding cost h. A per-unit purchase/production cost may also be considered,
this will be briefly discussed in Section 6.

The state transition function, sk = tk(sk−1, xk), is as follows

sk =







sk−1 − d̃k if xk = 0,

max(sk−1 − d̃k, b(k, xk) +
∑xk

i=k+1 d̃i) if k ≤ xk ≤ N.
(2)

Sk, the set of feasible expected closing-inventory-levels at the end of period
k, is obtained recursively from the state transition functions t1, t2, . . . , tk, by
assuming s0 = 0 and, therefore, that an order should be always placed at
period 1 in order to cover one or more following periods. In other words,
X1(s0) does not include the option of not placing an order.

The objective function is

z = min

{

N
∑

k=1

pk(sk, xk)

}

. (3)

To determine the value of z, DP solves a set of problems i = 1, . . . , N , each
corresponding to a system composed by i steps and characterized by the state
si at the end of step i. The recursive formulation of the cost function at step
i is:

fi(si) = min
xi∈Xi(si−1)

{fi−1(si−1) + pi(si, xi)}, (4)

where si = ti(si−1, xi). In addition, we have the following boundary condition:

f1(s1) = min
x1∈X1(s0)

{p1(s1, x1)}, (5)

where s1 = t1(s0, x1).

Clearly, a mere recursive approach would immediately generate a very large
State Space Graph that would certainly be unmanageable. For this reason, in
the following sections we will propose an effective strategy for limiting the size
of the State Space Graph.

5



4 A State Space Relaxation for the Deterministic Equivalent Prob-

lem

Intuitively, the first way of keeping the State Space Graph compact consists
in employing a relaxation that clusters states together. More specifically, in
order to do so we will employ a relaxation proposed by Tarim in [20].

The core observation in Tarim’s relaxation lies in the fact that, if we relax
the constraint which enforces non-negative order quantities — i.e. we give the
opportunity to sell back items in excess to the supplier at the beginning of
a given replenishment cycle — then the model proposed can be reduced to a
Shortest Path Problem on a state space graph having a number of nodes and
arcs polynomial in the number N of periods.

In this relaxation, since the inventory conservation constraint is relaxed be-
tween replenishment cycles, each replenishment cycle can be treated indepen-
dently and its expected total cost can be computed a priori. In fact, given
a replenishment cycle T (i, j), we recall that b(i, j), as defined above, denotes
the minimum expected buffer stock level required to satisfy a given service
level constraint during the replenishment cycle T (i, j). It directly follows that
Ĩj = b(i, j). Furthermore for each period t ∈ {i, . . . , j−1} the expected closing-
inventory-level is Ĩt = b(i, j) +

∑j
k=t+1 d̃k. Since all the Ĩt for t ∈ {i, . . . , j} are

known it is easy to compute the expected total cost for T (i, j), which is by
definition the sum of the ordering cost and of the holding cost components,
a + h

∑j
t=i Ĩt.

We now have a set S of N(N + 1)/2 possible different replenishment cycles
and their respective costs. Our new problem is to find an optimal set S∗ ⊂ S
of consecutive disjoint replenishment cycles that covers our planning horizon
at the minimum cost.

We shall now show that the optimal solution to this relaxation is given by the
shortest path in a state space graph from a given initial node to a final node
(boundary condition) where each arc represents a replenishment cycle cost. If
N is the number of periods in the planning horizon of the original problem,
we introduce N + 1 nodes. Since we assume that an order is always placed
at period 1, we take node 1, which represents the beginning of the planning
horizon, as the initial node. Node N + 1 represents the end of the planning
horizon.

Definition: The cycle cost, c(i, j), denotes the expected cost of the optimal
policy for T (i, j). It can be expressed as

c(i, j) = a + h(j − i + 1)b(i, j) + h
j

∑

t=i

(t− i)d̃t. (6)

6



The cycle cost is the sum of two components. A fixed ordering cost a, that is
charged at the beginning of the cycle when an order is placed, and a variable
holding cost ht charged at the end of each time period within the replenish-
ment cycle and proportional to the amount of stock held in inventory.

For each possible replenishment cycle T (i, j−1) such that i, j ∈ {1, . . . , N +1}
and i < j, we introduce an arc (i, j) with associated cost c(i, j − 1) (Fig. 1).
Since we are dealing with a one-way temporal feasibility problem [26], when

1 N+1i j

c(i,j-1)

Fig. 1. Shortest path problem graph

i ≥ j, we introduce no arc. As shown in [20], the cost of the shortest path from
node 1 to node N +1 in the given graph is a valid lower bound for the original
problem, as it is a solution of the relaxed problem. A shortest path can be effi-
ciently found by applying Dijkstra’s algorithm that runs in O(n2) time, where
n is the number of nodes in the graph. Details on efficient implementations of
Dijkstra’s algorithm can be found in [16].

It is easy to map the optimal solution for the relaxed problem, that is the
set of arcs participating to the shortest path, to an assignment for the orig-
inal problem by noting that each arc (i, j) represents a replenishment cycle
T (i, j − 1). The set of arcs in the optimal path therefore uniquely identifies a
set of disjoint replenishment cycles, that is a replenishment plan. Furthermore
for each period t ∈ {i, . . . , j − 1} in cycle T (i, j − 1) we already showed that
all the expected closing-inventory-levels Ĩt, t ∈ {i, . . . , j−1}, are known. This
produces a complete assignment for decision variables in our model. The feasi-
bility of an assignment with respect to the original problem can be checked by
verifying that it satisfies every relaxed constraint, that is no negative expected
order quantity is scheduled.

7



5 A Filtering Procedure for the Relaxed State Space Graph

In the previous section we presented a known relaxation for the deterministic
equivalent formulation of the (Rn,Sn) policy. In this relaxation we solve a
shortest path problem over a given graph in order to find a lower bound for
the cost of the optimal solution for the original problem.

We now aim to reduce a priori as much as possible the number of arcs in
the graph we defined in the previous section. To do so we exploit a reduction
procedure based on an upper bound for replenishment cycle lengths that was
originally presented by Tarim and Smith in [24].

Definition: Cycle opening inventory level, R(i, j), denotes the minimum open-
ing inventory level in period i to meet demand until period j +1 and R(i, j) =
b(i, j) +

∑j
t=i d̃t.

Let us assume now that period i is a replenishment period. It is not gen-
erally possible, prior to obtaining the optimal solution to an instance of the
problem, to determine the length of the optimum replenishment cycle for a
particular replenishment period; however, an upper bound on the length can
be determined using Proposition 1.

Proposition 1 (Tarim and Smith [24]) If ∀k ∈ {i, ..., j − 1},
(

c(i, k) +

c(k + 1, j) > c(i, j)
)

∨
(

b(i, k) > R(k + 1, j)
)

and ∃k ∈ {i, ..., j}
(

c(i, k) +

c(k + 1, j + 1) ≤ c(i, j + 1)
)

∧
(

b(i, k) ≤ R(k + 1, j + 1)
)

then for period i

the optimum length replenishment cycle is T (i, p)∗ where i ≤ p ≤ j, and j
indicates an upper bound.

Since we have an upper bound j for the length of an optimum replenishment
cycle starting at period i, we can remove from our graph every arc (i, t), where
t > j + 1.

6 An Augmenting Procedure for the Relaxed State Space Graph

Once the shortest path problem on the graph constructed as shown above is
solved, we can easily verify if every relaxed constraint is satisfied by the solu-
tion found, that is, if no expected negative replenishment quantity is scheduled
in the optimal replenishment plan. In this case, the solution found is feasible
and optimal for the original problem. If, on the other hand, the solution is
not feasible for the original model and it schedules expected negative replen-
ishment quantities, we can augment the graph with additional nodes and arcs
in such a way that the shortest path on the augmented graph is guaranteed

8



to provide a feasible and optimal solution for the original problem. In what
follows we shall show how to augment the graph and efficiently compute an
optimal solution for the original problem.

Algorithm 1: Augmenting Procedure

input : a relaxed and filtered state space graph RSG(S, T )
output: an augmented state space graph ASG(S ′, T ′)

begin1

i′ = N + 1;2

ASG(S ′, T ′)← RSG(S, T );3

for each node i = 1, . . . , N in S ′ do4

for each arc (p, i) in T ′ do5

let b∗ be the buffer stock associate to (p, i);6

for each arc (i, j) in T ′ do7

if b∗ > R(i, j − 1) then8

i′ = i′ + 1;9

create a new node i′ in S ′;10

introduce arc (p, i′) in T ′ with associated buffer stock b∗;11

remove arc (p, i) from T ′;12

let t > i be the minimum index for which13

b∗ ≤ R(i, t− 1) ≤ R(i, t) ≤ . . . ≤ R(i, N);
introduce arc (i′, t) T ′ with buffer stock b(i, t− 1);14

for each arc (i, k), k = t + 1, . . . , N + 1 in T ′ do15

introduce arc (i′, k) in T ′ with associated buffer stock16

b(i, k − 1);

let t− 1 > i be the maximum index for which17

b∗ > . . . ≥ R(i, t− 2);
introduce arc (i′, t− 1) in T ′with associated buffer stock18

b∗ −
∑t−1

k=i d̃k;

end19

For convenience, instead of associating a cost c(i, j − 1) to each arc (i, j) in
the graph, we will now associate the respective cycle buffer stock, b(i, j − 1),
as defined above. From the definitions given, it is easy to see that, once this
expected buffer stock level is fixed, also the cost c(i, j−1) is uniquely defined.

Let RSG(S, T ) be a relaxed state space graph built according to the discussion
in Section 4 and filtered according to the discussion in Section 5. Let S denote
the set of nodes and T the set of arcs in the graph. The pseudo-code for the
proposed augmenting procedure is presented in Algorithm 1. The procedure
eventually generates an augmented state space graph ASG(S ′, T ′), where S ′

is the set of nodes and T ′ is the set of arcs in the augmented graph.

9



Algorithm 1 initially creates a copy ASG(S ′, T ′) of RSG(S, T ) (line 3). Then
it considers each node in S ′ in order (line 4), starting from node 1 up to node
N . Note that node N +1 has no outbound arcs, so we do not have to consider
it. The process is repeated for each node i, therefore we will only describe the
steps performed on a single node.

We consider every inbound arc at node i (line 5) and we operate in the fol-
lowing fashion. Given an inbound arc (p, i) with associated buffer stock b∗

(line 6), for each outbound arc (i, j) in the graph (line 7) we check that
b∗ ≤ R(i, j − 1). If this condition is satisfied for every outbound arc, then
we preserve the inbound arc (p, i) at node i with the associated buffer stock
b∗ (Fig. 2). Otherwise, if b∗ > R(i, j − 1) (line 8), for a subsequent pair of re-

p N+1i j

b*

b(i,i)

b(i,j-1)

b(i,N)

Fig. 2. Feasible node point

plenishment cycles a negative order quantity is scheduled. In order to resolve
this infeasibility we perform the following transformation (lines 10. . .18). We
introduce a new node i′ in the graph. We remove arc (p, i) and we introduce
a new arc (p, i′) with associated buffer stock b∗ (Fig. 3). Then we connect this
new node the following way.

p N+1i t-1

b*

t

i�

b* - di-...- dt-1 b(i,t-1)
~~

b(i,N)

Fig. 3. Infeasible node point

Let t > i be the minimum index for which b∗ ≤ R(i, t − 1) ≤ R(i, t) ≤ . . . ≤
R(i, N). We introduce arc (i′, t) with buffer stock b(i, t−1). Then, for each arc
(i, t+1), . . . , (i, N +1) in the graph, we also introduce (i′, t+1), . . . , (i′, N +1)
with buffer stock, respectively, b(i, t), . . . , b(i, N). It should be noted that some
of the arcs (i, t + 1), . . . , (i, N + 1) may have been removed by the filtering
described in Section 5.

10



Let t − 1 > i be the maximum index for which b∗ > . . . ≥ R(i, t − 2).
We introduce arc (i′, t − 1) with buffer stock b∗ −

∑t−1
k=i d̃k. Obviously arcs

(i′, t−2), (i′, t−3), . . . are suboptimal and should not be introduced, since the
inventory carried on from the previous replenishment cycle is enough to cover
subsequent periods up to t− 1.

Note that, when the process is iterated on subsequent nodes i + 1, . . . , N , the
new inbound arcs that may have been introduced must also be considered
among all the possible ones for a given node.

By starting from node 1 and by iterating this process for each node i, 1 ≤ i ≤
N , we obtain an augmented graph. By construction the cost of the shortest
path in this augmented graph is the optimal solution cost for our original prob-
lem since every possible negative order quantity scenario has been considered
and replaced with the respective feasible possible courses of action. Neverthe-
less, as a consequence of the original filtering performed on the relaxed graph,
the augmented graph will typically feature a very limited number of node and
arcs. This will be shown in the following sections.

Before demonstrating our method on a simple numerical example, it is worth
mentioning the following. Our model, for the sake of simplicity, assumes a
zero unit purchase/production cost, also in line with the model in [24]. Nev-
ertheless, the extension of our algorithm to the case of a non-zero unit pro-
duction/purchasing cost is quite straightforward. In fact, as shown in [22]
pp.113, the total unit variable cost can be reduced to a function of the ex-
pected closing-inventory-level of the very last period N . Therefore, considering
such an effect in our algorithm is easy, since it only requires us to modify, in
the graph connection matrix, the costs that appear in the rightmost column,
which represents every possible replenishment cycle that ends in period N .

7 An Example

We shall consider here a simple example in detail, to show how in practice it
is possible to apply the procedure described.

A single problem over a 5-period planning horizon is considered and the ex-
pected values for period demand are [100, 125, 25, 40, 30]. We assume an initial
null inventory level and a normally distributed demand for every period with
a coefficient of variation σt/d̃t = 0.3 for each t ∈ {1, . . . , N}, where σt denotes
the standard deviation of the demand in period t. We consider an ordering cost
value a = 50 and a holding cost h = 1 per unit per period. The non-stock-out
probability in each period is set to α = 0.95.

11



Firstly we build the connection matrix for the relaxed problem as described in
Section 4. In Fig. 4 we show the connection matrix with the respective expected

1512

25

206249

23

28

63

66

68

79

80

82

84

1 2 3 4 5 6

Fig. 4. Connection matrix with expected buffer stock levels

buffer stock level b(i, j − 1) associated with each arc (i, j). 1 In Fig. 5 instead

6562

130

7011299

136

234

201

353

517

333

465

673

885

1 2 3 4 5 6

Fig. 5. Connection matrix with expected cycle costs

with each arc (i, j) we associate the respective expected cycle cost c(i, j − 1).
It should be noted that the two representations are equivalent, since the ex-
pected cycle cost can be easily computed once the expected buffer stock level
for a given cycle is fixed. In Fig. 6 the connection matrix is filtered according

15 (65)12 (62)

25 (130)

20 (70)62 (112)49 (99)

63 (201)

1 2 3 4 5 6

Fig. 6. Filtered connection matrix. Expected buffer stock levels and expected cycle
costs (in parentheses) are shown for each arc. The shortest path is highlighted

to the procedure presented in Section 5. Expected buffer stock levels and ex-
pected cycle costs (in parentheses) are indicated for each arc that has not been
removed by the filtering. The shortest path in this reduced network has a cost

1 For clarity, in order to keep the graphical presentation as compact as possible,
the expected buffer stock levels have been rounded to the nearest integer value.

12



of 403. The order periods and the order quantities are respectively [1, 2, 3, 4]
and [149, 138,−25, 83]. This assignment is infeasible for the non-relaxed prob-
lem since the expected order quantity in period 3 is −25, therefore its cost is a
lower bound for the optimal solution cost of our original problem. According
to the procedure described in Section 6 we augment the filtered graph and we
obtain the new graph in Fig. 7. The shortest path in this augmented network

15 (65)12

25 (130)

20 (70)62 (112)

49 (99)

63 (201)

37 (87) 23 (136)

23 (73)
25 (130)

1 2 3

3�

4

4�

5 6

Fig. 7. Augmented connection matrix. Expected buffer stock levels and expected
cycle costs (in parentheses) are shown for each arc. The shortest path is highlighted.
Node 3 (and obviously arc (3, 4)) has been removed from the network since the
augmenting procedure removed all its inbound arcs

has a cost of 412 and represents the optimal solution cost of our original prob-
lem. The replenishment periods in this optimal solution can be obtained from
the indexes of the nodes in the shortest path. The respective order quantities
can also be easily obtained from the expected buffer stock levels associated
with each arc in the shortest path. The order periods and the order quantities
are therefore respectively [1, 2, 3, 5] and [149, 138, 26, 22].

8 Experimental Results

We compared the results obtained with our approach with the results ob-
tained with the state-of-the-art Constraint Programming (CP) approach in
[21], based on the set of instances originally proposed in [3]. All the experi-
ments presented in this section were performed on an Intel(R) Centrino(TM)
CPU 1.50GHz with 500Mb RAM. As in [21], the demand in each period is
assumed to be normally distributed and we also assume that its coefficient
of variation remains sufficiently low (i.e. less or equal to 1/3) to ensure that
negative demand values can be ignored. We recall that in [21] period demands
are generated from seasonal data with no trend: d̃t = 50[1 + sin(πt/6)]. In
addition to the “no trend” case (P1) three others are also considered:

(P2) positive trend case, d̃t = 50[1 + sin(πt/6)] + t
(P3) negative trend case, d̃t = 50[1 + sin(πt/6)] + (52− t)
(P4) life-cycle trend case, d̃t = 50[1 + sin(πt/6)] + min(t, 52− t).

13



Tests are performed using four different ordering cost values a ∈ {40, 80, 160, 320}
and two different σt/d̃t ∈ {1/3, 1/6}. The planning horizon length takes even
values in the range [24, 50] when the ordering cost is 40 or 80 and [14, 24]
when the ordering cost is 160 or 320. The holding cost used in these tests is
h = 1 per unit per period. Tests consider two different service levels α = 0.95
(zα=0.95 = 1.645) and α = 0.99 (zα=0.99 = 2.326).

For almost all these instances our DP approach is either better — in terms of
run time — than the CP approach or equivalent, with some exceptions for the
smallest instances. When the number of periods considered in the planning
horizon grows, our DP approach clearly scales better than the CP approach.
The maximum improvement observed reaches a factor of 24. Nevertheless,
for this set of instances the CP approach remains competitive and achieves
reasonable run times of a few seconds also for the largest instances.

In what follows, we aim to highlight the limits of the CP approach and we want
to show that our DP approach remains very effective even for those instances
for which the CP approach performs poorly. In order to do so, we consider the
following set of instances (Test Set P5). The expected period demands, d̃t, are
generated as uniformly distributed random numbers in [0, 100]. Empirically,
in fact, we observed that generating random sequences of demands rather
than seasonal patterns or trends makes the problem harder to solve. Again
we consider four different ordering cost values a ∈ {25, 50, 100, 200} and two
different σt/d̃t ∈ {1/3, 1/6}. The planning horizon length takes the values
{50, 75}. The holding cost used in these tests is h = 1 per unit per period.
Again we consider two different service levels α = 0.95 (zα=0.95 = 1.645) and
α = 0.99 (zα=0.99 = 2.326). Table 1 compares the CP and the DP approach
for this new set of instances. In our test results, the heading “CP” refers
to the state-of-the-art CP approach in [21], while “DP” refers to our novel
DP approach. For the CP approach we report the number of nodes explored
(“Nod”) and the run time in seconds (“Sec”); for our DP approach we report
the size of the state space graph generated (“Graph”) and the run time in
seconds (“Sec”). The size of the state space graph is described as a pair 〈N ; A〉,
where N is the number of nodes and A is the number of arcs. When a field is
empty in the table, this means that the CP approach and the DP approach
are equivalent, since for that particular instance the CP approach was able to
prove optimality at the root node in polynomial time using the DP relaxation
originally proposed in [20].

It is immediately clear that for low a/h ratios (that is for the lowest ordering
costs considered), the CP approach has to explore a large search space and
requires a long time to prove optimality, while our DP approach still generates
small state space graphs and achieves fast runtimes. As the ratio a/h increases,
the CP approach performs better and, for some instance, it is equivalent to
our DP approach.

14



In the last set of instances considered (Test Set P6) we aim to show that our
approach is effective even when the planning horizon is significantly longer,
and that the computation is not affected by the magnitude of the demands
considered. The planning horizon length now ranges up to 250 periods, in order
to show that our approach scales well in the number of periods. The expected
period demands d̃t are generated as uniformly distributed random numbers
in [0, 10000], in order to show that large values for the expected demands
do not affect the scalability of our approach. Once more, we consider four
different ordering cost values a ∈ {2500, 5000, 10000, 20000} and two different
σt/d̃t ∈ {1/3, 1/6}. The planning horizon length takes the following values
{75, 110, 145, 180, 215, 250}. The holding cost used in these tests is h = 1
per unit per period. Also in this case, we consider two different service levels
α = 0.95 (zα=0.95 = 1.645) and α = 0.99 (zα=0.99 = 2.326). The computational
results in Table 2 show that the graphs generated are still extremely compact
and that the run times are mostly under one second even if a long planning
horizon and large demands are considered.

9 Conclusions

We proposed a novel DP approach for computing (Rn,Sn) policy parameters.
Our experimental results show that our approach, based on the described fil-
tering algorithm for the State Space Graph and on the State Space Graph
augmenting procedure, can solve instances over planning horizons compris-
ing hundreds of periods. State Space Relaxation and State Space Augmenta-
tion are two known strategies in Operations Research, nevertheless, the idea
of filtering a relaxed state space graph is, to the best of our knowledge, a
novel contribution. As our computational experience shows, our DP reformu-
lation performs significantly better than the original MIP approach proposed
by Tarim and Kingsman and it also beats the state-of-the-art reformulations
proposed by Tarim and Smith and by Tarim et al. . Furthermore our results
are not affected by the magnitude of the demand considered in each period.

Acknowledgments: We wish to thank the anonymous reviewers who signif-
icantly contributed to improving the quality of this manuscript.

15



References

[1] R. G. Askin. A procedure for production lot sizing with probabilistic dynamic
demand. AIIE Transactions, 13(2):132–137, 1981.

[2] R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton,
NJ, 1957.

[3] W. L. Berry. Lot sizing procedures for requirements planning systems: A
framework for analysis. Production and Inventory Management Journal,
13(2):19–34, 1972.

[4] N. Boland, J. Dethridge, and I. Dumitrescu. Accelerated label setting
algorithms for the elementary resource constrained shortest path problem. Oper.
Res. Lett., 34(1):58–68, 2006.

[5] J. H. Bookbinder and J. Y. Tan. Strategies for the probabilistic lot-sizing
problem with service-level constraints. Management Science, 34(9):1096–1108,
1988.

[6] N. Christofides, A. Mingozzi, and P. Toth. State space relaxation procedures
for the computation of bounds to routing problems. Networks, 11(2):145–164,
1981.

[7] A. G. de Kok. Basics of inventory management: part 2 The (R,S)-model.
Research memorandum, FEW 521, 1991. Department of Economics, Tilburg
University, Tilburg, The Netherlands.

[8] A. G. de Kok and K. Inderfurth. Nervousness in inventory management:
Comparison of basic control rules. European Journal of Operational Research,
103(1):55–82, 1997.

[9] S. B. Dreyfus and A. M. Law. The Art And Theory of Dynamic Programming.
Academic Press, New York, 1989.

[10] F. Focacci and M. Milano. Connections and integrations of dynamic
programming and constraint programming. In Proceedings of the International
Workshop on Integration of AI and OR techniques in Constraint Programming
for Combinatorial Optimization Problems CP-AI-OR 2001, 2001.

[11] G. Heisig. Planning Stability in Material Requirements Planning Systems.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2002.

[12] A. Mingozzi, L. Bianco, and S. Ricciardelli. Dynamic programming strategies
for travelling salesan problem with time windows and precedence constraints.
Operations Research, 45(3):365–377, 1997.

[13] I. N. Pujawan and E. A. Silver. Augmenting the lot sizing order quantity when
demand is probabilistic. European Journal of Operational Research, 127(3):705–
722, August 2008.

16



[14] G. Righini and M. Salani. New dynamic programming algorithms for the
resource constrained elementary shortest path problem. Networks, 51(3):155–
170, 2008.

[15] R. Rossi, S. A. Tarim, B. Hnich, and S. Prestwich. A global chance-constraint
for stochastic inventory systems under service level constraints. Constraints,
13(4):490–517, 2008.

[16] R. Sedgewick. Algorithms (2nd ed.). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1988.

[17] E. A. Silver. Inventory control under a probabilistic time-varying demand
pattern. AIIE Transactions, 10(4):371–379, 1978.

[18] E. A. Silver, D. F. Pyke, and R. Peterson. Inventory Management and
Production Planning and Scheduling. John-Wiley and Sons, New York, 1998.

[19] C. S. Tang. Perpectives in supply chain risk management. International Journal
of Production Economics, 103(2):451–488, 2006.

[20] S. A. Tarim. Dynamic Lotsizing Models for Stochastic Demand in Single and
Multi-Echelon Inventory Systems. PhD thesis, Lancaster University, 1996.

[21] S. A. Tarim, B. Hnich, R. Rossi, and S. Prestwich. Cost-based filtering
techniques for stochastic inventory control under service level constraints.
Constraints, 14(2):137–176, 2009.

[22] S. A. Tarim and B. G. Kingsman. The stochastic dynamic production/inventory
lot-sizing problem with service-level constraints. International Journal of
Production Economics, 88(1):105–119, 2004.

[23] S. A. Tarim, S. Manandhar, and T. Walsh. Stochastic constraint programming:
A scenario-based approach. Constraints, 11(1):53–80, 2006.

[24] S. A. Tarim and B. Smith. Constraint Programming for Computing Non-
Stationary (R,S) Inventory Policies. European Journal of Operational Research,
189(3):1004–1021, 2008.

[25] H. Tempelmeier. On the stochastic uncapacitated dynamic single-item lotsizing
problem with service level constraints. European Journal of Operational
Research, 181(1):184–194, 2007.

[26] H. M. Wagner and T. M. Whitin. Dynamic version of the economic lot size
model. Management Science, 5(3):89–96, 1958.

17



σt/d̃t = 1/3
α = 0.95 α = 0.99

CP DP CP DP

a N Nod Sec Graph Sec Nod Sec Graph Sec

25
50 857 45 〈64; 76〉 0.33 2474 170 〈67; 82〉 0.30

75 41386 5400 〈102; 125〉 0.38 180000∗ 20000∗ 〈106; 133〉 0.37

50
50 441 17 〈66; 84〉 0.34 1242 170 〈69; 88〉 0.33

75 23805 2400 〈104; 133〉 0.37 180000∗ 20000∗ 〈108; 139〉 0.37

100
50 〈51; 87〉 0.21 104 5 〈73; 109〉 0.34

75 〈76; 134〉 0.24 329 30 〈113; 167〉 0.21

200
50 〈51; 139〉 0.23 〈51; 131〉 0.24

75 〈76; 212〉 0.26 〈76; 200〉 0.28

σt/d̃t = 1/6
α = 0.95 α = 0.99

CP DP CP DP

a N Nod Sec Graph Sec Nod Sec Graph Sec

25
50 22 1 〈58; 65〉 0.34 325 17 〈61; 70〉 0.33

75 245 35 〈90; 103〉 0.2 10118 970 〈98; 116〉 0.20

50
50 〈51; 69〉 0.20 70 3 〈63; 80〉 0.42

75 〈76; 106〉 0.14 155 14 〈100; 126〉 0.37

100
50 〈51; 103〉 0.13 〈51; 94〉 0.12

75 〈76; 161〉 0.26 〈76; 145〉 0.25

200
50 〈51; 158〉 0.22 〈51; 184〉 0.15

75 〈76; 242〉 0.27 〈76; 226〉 0.26

Table 1
Test set P5. A figure marked with ∗ means that the instance could not be solved in
the given limit of 20000 seconds (5.55 hours)

18



σt/d̃t = 1/3 σt/d̃t = 1/6
α = 0.95 α = 0.99 α = 0.95 α = 0.99

a N Graph Sec Graph Sec Graph Sec Graph Sec

2500

75 〈102; 125〉 0.44 〈106; 133〉 0.38 〈90; 103〉 0.25 〈98; 116〉 0.26

110 〈153; 194〉 0.36 〈160; 208〉 0.36 〈134; 157〉 0.31 〈144; 175〉 0.28

145 〈197; 246〉 0.41 〈208; 266〉 0.41 〈174; 202〉 0.41 〈185; 222〉 0.41

180 〈242; 301〉 0.48 〈255; 327〉 0.49 〈211; 245〉 0.46 〈225; 268〉 0.47

215 〈284; 350〉 0.96 〈297; 376〉 0.93 〈248; 285〉 0.93 〈263; 310〉 0.88

250 〈329; 407〉 0.79 〈346; 439〉 0.79 〈287; 330〉 0.75 〈305; 361〉 0.77

5000

75 〈104; 133〉 0.20 〈108; 139〉 0.48 〈76; 107〉 0.13 〈100; 126〉 0.22

110 〈155; 202〉 0.57 〈162; 214〉 0.29 〈111; 152〉 0.18 〈146; 185〉 0.28

145 〈199; 255〉 0.36 〈210; 272〉 0.40 〈146; 198〉 0.21 〈187; 234〉 0.62

180 〈245; 317〉 0.46 〈258; 337〉 0.55 〈181; 250〉 0.30 〈230; 295〉 0.49

215 〈287; 366〉 0.85 〈300; 386〉 0.94 〈216; 296〉 0.75 〈268; 338〉 0.49

250 〈332; 426〉 0.76 〈349; 450〉 0.74 〈251; 347〉 0.61 〈312; 399〉 0.95

10000

75 〈76; 134〉 0.13 〈116; 174〉 0.34 〈76; 162〉 0.15 〈76; 147〉 0.04

110 〈170; 270〉 0.29 〈171; 256〉 0.19 〈111; 230〉 0.22 〈111; 211〉 0.10

145 〈216; 344〉 0.62 〈224; 332〉 0.35 〈146; 300〉 0.26 〈146; 280〉 0.19

180 〈271; 439〉 0.51 〈279; 422〉 0.69 〈181; 377〉 0.34 〈181; 354〉 0.25

215 〈317; 517〉 0.85 〈324; 493〉 0.61 〈216; 448〉 0.70 〈216; 423〉 0.58

250 〈365; 593〉 1.02 〈375; 569〉 0.99 〈251; 512〉 0.62 〈251; 485〉 0.67

20000

75 〈76; 212〉 0.14 〈76; 201〉 0.15 〈76; 242〉 0.15 〈76; 228〉 0.17

110 〈111; 306〉 0.21 〈111; 292〉 0.13 〈111; 352〉 0.17 〈111; 332〉 0.16

145 〈146; 408〉 0.27 〈146; 388〉 0.24 〈146; 460〉 0.39 〈146; 437〉 0.26

180 〈181; 514〉 0.35 〈181; 485〉 0.49 〈181; 575〉 0.38 〈181; 546〉 0.54

215 〈216; 617〉 0.67 〈216; 585〉 0.44 〈216; 685〉 0.50 〈216; 652〉 0.47

250 〈251; 713〉 0.68 〈251; 675〉 0.60 〈251; 787〉 0.80 〈251; 750〉 0.79

Table 2
Test set P6

19


