Package | Description |
---|---|
jsdp.sdp | |
jsdp.sdp.impl.multivariate | |
jsdp.sdp.impl.univariate |
Modifier and Type | Field and Description |
---|---|
protected Recursion.OptimisationDirection |
Recursion.direction |
Modifier and Type | Method and Description |
---|---|
static Recursion.OptimisationDirection |
Recursion.OptimisationDirection.valueOf(String name)
Returns the enum constant of this type with the specified name.
|
static Recursion.OptimisationDirection[] |
Recursion.OptimisationDirection.values()
Returns an array containing the constants of this enum type, in
the order they are declared.
|
Constructor and Description |
---|
BackwardRecursion(Recursion.OptimisationDirection direction)
Creates an instance of
BackwardRecursion with the given optimization direction. |
BestActionRepository(Recursion.OptimisationDirection direction) |
ForwardRecursion(Recursion.OptimisationDirection direction)
Creates an instance of
ForwardRecursion with the given optimization direction. |
Recursion(Recursion.OptimisationDirection direction)
Creates an instance of
Recursion with the given optimisatio direction. |
Constructor and Description |
---|
BackwardRecursionImpl(Recursion.OptimisationDirection optimisationDirection,
umontreal.ssj.probdistmulti.DiscreteDistributionIntMulti[] demand,
ImmediateValueFunction<State,Action,Double> immediateValueFunction,
RandomOutcomeFunction<State,Action,double[]> randomOutcomeFunction,
Function<State,ArrayList<Action>> buildActionList,
Function<State,Action> idempotentAction,
double discountFactor,
SamplingScheme samplingScheme,
int maxSampleSize,
double reductionFactorPerStage,
HashType hash)
Creates an instance of the problem and initialises state space, transition probability and value repository.
|
BackwardRecursionImpl(Recursion.OptimisationDirection optimisationDirection,
umontreal.ssj.probdistmulti.DiscreteDistributionIntMulti[] demand,
ImmediateValueFunction<State,Action,Double> immediateValueFunction,
RandomOutcomeFunction<State,Action,double[]> randomOutcomeFunction,
Function<State,ArrayList<Action>> buildActionList,
Function<State,Action> idempotentAction,
double discountFactor,
SamplingScheme samplingScheme,
int maxSampleSize,
double reductionFactorPerStage,
int stateSpaceSizeLowerBound,
float loadFactor,
HashType hash)
Creates an instance of the problem and initialises state space, transition probability and value repository.
|
Constructor and Description |
---|
BackwardRecursionImpl(Recursion.OptimisationDirection optimisationDirection,
umontreal.ssj.probdist.Distribution[][][] demand,
double[][][] supportLB,
double[][][] supportUB,
ImmediateValueFunction<State,Action,Double> immediateValueFunction,
RandomOutcomeFunction<State,Action,Double> randomOutcomeFunction,
Function<State,ArrayList<Action>> buildActionList,
Function<State,Action> idempotentAction,
double discountFactor,
SamplingScheme samplingScheme,
int maxSampleSize,
double reductionFactorPerStage,
HashType hash)
Creates an instance of the problem and initializes state space, transition probability and value repository.
|
BackwardRecursionImpl(Recursion.OptimisationDirection optimisationDirection,
umontreal.ssj.probdist.Distribution[][] demand,
double[][] supportLB,
double[][] supportUB,
ImmediateValueFunction<State,Action,Double> immediateValueFunction,
RandomOutcomeFunction<State,Action,Double> randomOutcomeFunction,
Function<State,ArrayList<Action>> buildActionList,
Function<State,Action> idempotentAction,
double discountFactor,
SamplingScheme samplingScheme,
int maxSampleSize,
double reductionFactorPerStage,
HashType hash)
Creates an instance of the problem and initializes state space, transition probability and value repository.
|
BackwardRecursionImpl(Recursion.OptimisationDirection optimisationDirection,
umontreal.ssj.probdist.Distribution[] demand,
double[] supportLB,
double[] supportUB,
ImmediateValueFunction<State,Action,Double> immediateValueFunction,
RandomOutcomeFunction<State,Action,Double> randomOutcomeFunction,
Function<State,ArrayList<Action>> buildActionList,
Function<State,Action> idempotentAction,
double discountFactor,
SamplingScheme samplingScheme,
int maxSampleSize,
double reductionFactorPerStage,
HashType hash)
Creates an instance of the problem and initializes state space, transition probability and value repository.
|
BackwardRecursionImpl(Recursion.OptimisationDirection optimisationDirection,
umontreal.ssj.probdist.Distribution[] demand,
double[] supportLB,
double[] supportUB,
ImmediateValueFunction<State,Action,Double> immediateValueFunction,
RandomOutcomeFunction<State,Action,Double> randomOutcomeFunction,
Function<State,ArrayList<Action>> buildActionList,
Function<State,Action> idempotentAction,
double discountFactor,
SamplingScheme samplingScheme,
int maxSampleSize,
double reductionFactorPerStage,
int stateSpaceSizeLowerBound,
float loadFactor,
HashType hash)
Creates an instance of the problem and initializes state space, transition probability and value repository.
|
Copyright © 2017–2018. All rights reserved.